

Dr. Cavallari has no conflicts of interest to disclose.

- Identify genetic variations influencing pharmacokinetic and pharmacodynamic properties.
- Recognize examples of genetic information in drug labeling.
- Explain how pharmacogenomic principles affect drug therapy decisions.

Factors Influencing Drug Response

- Age
- Race/ ethnicity
- Pharmacokinetics
- Concomitant diseases
- Concomitant medications

Inter-Patient Variability in Warfarin Response

Patient #1

- African American male
- 55 yo
- BMI 28 kg/m²
- No interacting drugs
- Normal liver function
- Low vitamin K intake
- Taking warfarin 3.2 mg/day to maintain INR of 2-3.

Patient #2

- African American male
- 53 yo
- BMI 29 kg/m²
- No interacting drugs
- Normal liver function
- Low vitamin K intake
- Taking warfarin 10 mg/day to maintain INR of 2-3.

Y

Factors Influencing Drug Response

- Age
- · Race/ ethnicity
- · Pharmacokinetics
- · Concomitant diseases
- · Concomitant medications
- GENOTYPE

Incorporating the Personal Genome in Clinical Assessment Ashley EA et al. Lancet 2010;375:1525-35.

• Analyzed complete genome sequence of a 40-yo man with a family h/o vascular disease and sudden cardiac death.

- Analysis of 2.6 million variants showed an increased risk for MI, type 2 DM, and some cancers.
- Had 3 rare mutations associated with SCD.
- Had CYP2C19, HMGCR, SLCO1B1, and VKORC1 variants suggesting possible clopidogrel resistance, good response to statins, and need for lower warfarin dose requirements.

Pharmacogenetics

- Hereditary basis for inter-individual differences in drug response.
- Goal: optimize drug therapy and limit drug toxicity based on a person's DNA.

PharmacogenETics vs. PharmacogenOMics

- Pharmacogen<u>etics</u>: a single gene that influences drug response.
- Pharmacogen<u>om</u>ics: multiple genes that influence drug response.

Other Types of Genetic Variants

- <u>Insertion/deletion polymorphism</u> addition or removal of a strand of nucleotides
- <u>Tandem repeat polymorphism</u> series of nucleotides that may be repeated in the genome a variable number of times (e.g. CAA repeat in GGCX)

What is the most common type of genetic variation?

- 1. SNP
- 2. Tandem repeat
- 3. Insertion/deletion

What is a SNP?

¥

- Addition or removal of a strand of nucleotides
- 2. Substitution of one nucleotide base by another
- 3. Series of nucleotide repeated a variable number of times

Clinical Implications of *TPMT* Polymorphisms

- Genetic testing for *TPMT* is available for clinical use.
- 6-mercaptopurine dose reduction required for patients with a dysfunctional *TPMT* allele:
 - Moderate dose reduction required in heterozygotes.
 - -90%-95% reduction required in homozygotes.

Warfarin

- Anticoagulant drug used for the prevention of thromboembolic disorders.
- Challenges with warfarin therapy: - Narrow therapeutic index.
 - Substantial inter-patient variability in warfarin dose requirements.
- S-isomer metabolized by CYP2C9.

What are the primary genes affecting warfarin dose requirements?

¥

- 1. CYP2C19 and Prothrombin
- 2. CYP4F2 and Factor X
- 3. CYP2C9 and vitamin K epoxide reductase
- 4. CYP3A4 and calumenin

		Prevalence		
	Amino acid			
Allele	change	Caucasians	African Americans	Asians
*2	144Arg/Cys	20%	4%	<1%
*3	359lle/Leu	12%	2%	6-8%
*8	150Arg/His	<1%	12%	<1%

Vitamin K Epoxide Reductase (*VKORC1*) Gene and Warfarin

- *VKORC1* encodes the warfarin-sensitive component of vitamin K epoxide reductase.
- -1639G>A SNP in VKORC1 promoter region

4

3 possible genotypes

.

- GG least sensitive
- AG intermediate sensitivity
- AA most sensitive

FDA Revises Warfarin Label in 2010						
VKORC1	CYP2C9					
	*1/*1	*1/*2	*1/*3	*2/*2	*2/*3	*3/*3
GG	5-7	5-7	3-4	3-4	3-4	0.5-2
GA	5-7	3-4	3-4	3-4	0.5-2	0.5-2
AA	3-4	3-4	0.5-2	0.5-2	0.5-2	0.5-2
Warfarin produ	uct labeling.	Rev 1/10.				

Clinical Implications of CYP2C9 and VKORC1 Polymorphisms

- Assist in choosing appropriate warfarin dosing for patients.
- May decrease the time to achieve optimal dosing.
- Reduce problems (bleeding) of high INRs during warfarin initiation.

Y

Clopidogrel

- Thienopyridine that inhibits the P2Y12 receptor
- Reduces the risk for stent thrombosis
- Improves outcomes in:
 - Acute coronary syndromes
 - Percutaneous coronary intervention.
- Approximately 25% of patients are non-responders to clopidogrel.

Combescure C et al 2010 J Thomb Haemost 2010 [PMID 20156305]

Which gene is associated with response to clopidogrel?

- 1. CYP2C19
- 2. CYP1A2
- 3. CYP2B6
- 4. CYP2C9

Ciopidogrei: (JYP20	519	
Loss of function alle	eles: *2	, *3, *4, *5	5
Phenotype			
CYP2C19 alleles	Phenotype		
2 loss-of-function alleles	PM - Poor Metabolizer		
1 loss-of-function allele	IM - Intermediate Metabolize		
Population prevaler	nce		
Race	РМ	IM	
Caucasian	2%	25%	
African American	4%	30%	

14%

50%

¥

Y

Asian

Clopidogrel: CY	P2C19		
Meta-analysis of 10 tria	als (9684 pa	atients):	
	Risk Ratio (95% CI)		
Outcome	1 variant vs *1/*1	2 variants vs *1/*1	
Major adverse cardiac events	1.5 (1.1-2.1)	1.8 (1.2-2.7)	
	0 5 (4 0 4 0)	4 8 (2 0-11 4)	

Mega JL et al. Circulation. 2009;120:S598-S599

Clopidogrel Labeling

- Boxed warning added in March 2010
 - Warns of reduced effectiveness of clopidogrel in CYP2C19 PMs.
 - States availability of genetic testing.
 - Advises consideration of alternative treatment strategies in PMs.
- Labeling does not provide recommendations on specific strategies for PMs or include recommendations for IMs.

HLA allele and Stevens Johnson Syndrome (SJS)

- SJS/Toxic epidermal necrolysis (TEN)
- Severe adverse reactions to carbamazepine.
- Serious blistering reactions of the skin and mucous membranes that can be permanently disabling or fatal.
- ~10 times more common among Asians.
- Human Leukocyte Antigen-B*1502 allele
- Found almost exclusively in patients with Asian ancestry.
- Associated with increased risk of SJS/TEN from carbamazepine.

Carbamazepine Labeling

- Updated in 2007.
- Patients with ancestry from areas in which HLA-B*1502 is present should be screened for the HLA-B*1502 allele before starting treatment with carbamazepine. If they test positive, carbamazepine should not be started unless the expected benefit clearly outweighs the increased risk of serious skin reactions.
- Because this new data suggests a possible association between HLA-B*1502 and phenytoin – induced SJS, healthcare providers should consider avoiding phenytoin as alternative for carbamazepine in patients who test positive for HLA-B*1502.

Tegretol product labeling, rev 2-09

Clinical Application of Pharmacogenomics

- Individualize therapy based on genotype.
 - Predict likelihood of response and risk for toxicity based on DNA (e.g. warfarin, carbamazepine).
 - Choose drug therapy accordingly.
- Potential to eliminate trial-and-error approach to drug prescribing (e.g. antihypertensive drugs).
- Streamline treatment for complicated diseases (e.g. heart failure)

Drug	Gene	Effect	Testing Status
Carbamazepine, Phenytoin	HLA-B	Increased risk for Stevens Johnson	Recommended for at-risk persons
Warfarin	CYP2C9; VKORC1	Altered metabolism and sensitivity	Suggested
Clopidogrel	CYP2C19	Determines efficacy	Suggested
Rasburicase	G6PD	Severe hemolysis	Recommended for at-risk persons
Trastuzamab	HER2	Determines efficacy	Mandated
Cetuximab	EGFR	Determines efficacy	Mandated
Azathioprine (6MP)	TPMT	Increased risk for myelotoxicity	Recommended

CASE 1: A 4 yo boy is diagnosed with acute lymphoblastic leukemia and is prescribed 6mercaptopurine. Basing dosing decisions on TPMT genotype may result in which of the following?

- 1. Eliminate need for hematologic monitoring
- 2. Decreased risk for anemia
- 3. Shorten course of chemotherapy
- 4. Decreased need for multi-drug chemotherapy regimens

CASE 2: A 60 yo, 62 kg female is started on warfarin for stroke prevention in a. fib. Her other meds are metoprolol and atorvastatin. Genetic testing shows the *CYP2C9**1/*3 and *VKORC1* -1639 A/A genotypes. What is the most appropriate warfarin starting dose?

- 1. 2.5 mg/day
- 2. 5 mg/day
- 3. 7.5 mg/day
- 4. 10 mg/day

CASE 3: JM is a 55 yo male who suffers an ACS. He undergoes PCI with placement of a drugeluting stent. He weighs 80 kg and has NKDA. Genotyping shows the *CYP2C19**2/*2 genotype. What do you recommend?

- 1. Standard dose clopidogrel
- 2. Prasugrel
- 3. High dose clopidogrel
- 4. Platelet aggregation testing

CASE 4: JB is an Asian male with newly diagnosed epilepsy. The physician is considering starting carbamazepine in this patient. What do you recommend?

- 1.
- 2.
- Genotype for HLA-B*1502 allele and start carbamazepine if present Genotype for the HLA-B*1502 allele and start phenytoin if present Genotype for HLA-B*1502, and avoid both carbamazepine and phenytoin if present 3.
- Genotyping is not necessary as JB is at low risk for having the HLA-B*1502 allele 4.

Bibliography

- Ashley EA, Butte AJ, Wheeler MT. Clinical assessment incorporating a personal genome. Lancet 2010;375:1525-35.
- Higashi MK, Veenstra DL, Kondo LM, et al. Association between ٠ CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA 2002;287:1690-98.
- Cavallari LH, Langaee TY, Momary KM, et al. Genetic and clinical predictors of warfarin dose requirements in African Americans. Clin Pharmacol Ther 2010;87:4594-64.
- Combescure C, Fontana P, Mallouk N, et al. Clinical implications of clopidogrel non-response in cardiovascular patients: a systematic review and meta-analysis. *J Thomb Haemost* 2010 [Epub ahead of print; PMID 20156305]
- Mega JL, Simon T, Anderson JL et al. CYP2C19 Genetic Variants and Clinical Outcomes With Clopidogrel: A Collaborative Meta-Analysis. *Circulation*. 2009;120:S598-9. (Abstract)