Achieving Hemostasis in the Operating Room and Critical Care Setting: What the Pharmacist Needs to Know

A knowledge-based CPE activity presented during the 2013 MSHP-ICHP Spring Meeting

Friday, April 12, 2013
St. Charles, Missouri

Planned and conducted by ASHP Advantage and supported by an educational grant from ZymoGenetics, a Bristol-Myers Squibb Company.
Achieving Hemostasis in the Operating Room and Critical Care Setting:
What the Pharmacist Needs to Know

ACTIVITY FACULTY

Bradley A. Boucher, Pharm.D., FCCP, FCCM, BCPS
Professor of Clinical Pharmacy and Associate Professor of Neurosurgery
University of Tennessee Health Science Center
Memphis, Tennessee

Bradley A. Boucher, Pharm.D., FCCP, FCCM, is Professor of Clinical Pharmacy and Associate Professor of Neurosurgery at the University of Tennessee Health Science Center in Memphis. He also practices as a clinical pharmacist in the area of critical care at Regional Medical Center at Memphis.

Dr. Boucher received his Bachelor of Science and Doctor of Pharmacy degrees from the University of Minnesota and completed a critical care fellowship at the University of Kentucky. In addition, he is a board-certified pharmacotherapy specialist and a fellow of the American College of Clinical Pharmacy (ACCP) and American College of Critical Care Medicine. Dr. Boucher has received several professional honors, including being elected as a pharmacy member of the National Academy of Practitioners and receiving the 2011 ACCP Clinical Practice Award.

Dr. Boucher’s current research interests include pharmacokinetic and therapeutic issues in the critically ill surgical patient and medical management of the neurotrauma patient. He has published over 75 peer reviewed articles and 15 book chapters during his career. He has also served as an editorial board member for several medical journals, including Critical Care Medicine and American Journal of Pharmaceutical Education, and he is currently serving on the editorial board of Critical Care Research and Practice. Dr. Boucher has served as President of ACCP and maintains active membership in numerous professional scientific and professional organizations, including ACCP, American Society of Health-System Pharmacists, and Society of Critical Care Medicine.
Achieving Hemostasis in the Operating Room and Critical Care Setting: What the Pharmacist Needs to Know

DISCLOSURE STATEMENT

In accordance with the Accreditation Council for Continuing Medical Education’s Standards for Commercial Support and the Accreditation Council for Pharmacy Education’s Guidelines for Standards for Commercial Support, ASHP Advantage requires that all individuals involved in the development of activity content disclose their relevant financial relationships. A person has a relevant financial relationship if the individual or his or her spouse/partner has a financial relationship (e.g., employee, consultant, research grant recipient, speakers’ bureau, or stockholder) in any amount occurring in the last 12 months with a commercial interest whose products or services may be discussed in the activity content over which the individual has control. The existence of these relationships is provided for the information of participants and should not be assumed to have an adverse impact on presentations.

All faculty and planners for ASHP Advantage education activities are qualified and selected by ASHP Advantage and required to disclose any relevant financial relationships with commercial interests. ASHP Advantage identifies and resolves conflicts of interest prior to an individual’s participation in development of content for an educational activity.

The faculty and planners report the following relationships:

Bradley A. Boucher, Pharm.D., FCCP, FCCM, BCPS

Dr. Boucher declares that he has served on the speakers bureau and as a consultant for ZymoGenetics-BMS.

William D. Spotnitz, M.D., M.B.A

Dr. Spotnitz declares that he has served as a consultant for Baxter, Bayer, BioLineRx, Biom’Up, Covidien, Cubist, Ethicon/J&J, Grifols, Lifebond, Luna Innovations, Medafor, Neomend, Profibrix, Sealantis, and ZymoGenetics-BMS.

Kristi Hofer, Pharm.D.

Dr. Hofer declares that she has no relationships pertinent to this activity.

Carla Brink, M.S., B.S.Pharm.

Ms. Brink declares that she has no relationships pertinent to this activity.

Susan R. Dombrowski, M.S., B.S.Pharm.

Ms. Dombrowski declares that she has no relationships pertinent to this activity.

ASHP staff has no relevant financial relationships to disclose.
ACTIVITY OVERVIEW

Bleeding is a major complication of surgery and is associated with poor clinical outcomes. A number of techniques and products for achieving surgical hemostasis are available. Although pharmacists may not be present in the surgical suite, they need to be aware of surgery-related processes that decrease the need for blood transfusions and improve patient safety in the operating room and critical care practice areas. This educational activity will review key clinical, safety, economic, and regulatory factors that pharmacists need to consider when evaluating local and systemic hemostatic agents for use in the institutional setting.

There will be time for questions and answers at the end of the presentation.

LEARNING OBJECTIVES

At the conclusion of this knowledge-based CPE activity, attendees should be able to

- Discuss the clinical and economic impact of surgical complications that result in bleeding and transfusion.
- Demonstrate knowledge of local and systemic hemostatic agents, including clinical, safety, economic, and regulatory factors.
- Describe the role of the health-system pharmacist in the use of hemostatic agents to manage surgical bleeding.

CONTINUING EDUCATION ACCREDITATION

The American Society of Health-System Pharmacists is accredited by the Accreditation Council for Pharmacy Education as a provider of continuing pharmacy education. This activity provides 1 hour (0.1 CEU) of continuing pharmacy education credit (ACPE activity # 0204-0000-13-416-L01-P).

Attendees must complete a Continuing Pharmacy Education Request online and may print their official ASHP statements of continuing pharmacy education credit at the ASHP eLearning site (elearning.ashp.org) immediately following this activity.
Achieving Hemostasis in the Operating Room and Critical Care Setting: What the Pharmacist Needs to Know

Instructions for Processing CE Credit with Enrollment Code

Pharmacists and Technicians: All ACPE accredited activities which are processed on the eLearning site will be reported directly to CPE Monitor. To claim pharmacy credit, you must have your NABP e-Profile ID, birth month, and birth day. If you do not have an NABP e-Profile ID, go to www.MyCPEMonitor.net for information and application. Please follow the instructions below to process your CPE credit for this activity.

1. The ASHP eLearning site allows participants to obtain statements of continuing education credit conveniently and immediately using any computer with an internet connection. Type the following link into your web browser to access the e-Learning site: http://elearning.ashp.org/my-activities

2. If you already have an account registered with ASHP, log in using your username and password.

 If you have not logged in to any of the ASHP sites before and/or are not a member of ASHP, you will need to set up an account. Click on the Register link and follow the registration instructions.

3. Once logged in to the site, enter the enrollment code for this activity in the field provided and click Redeem.

 Note: The Enrollment Code was announced at the end of the live activity.
 Please record the Enrollment Code in the grid below for your records.

4. The title of this activity should now appear in a pop-up box on your screen. Click on the Go button or the activity title.

5. Complete all required elements. A green ✓ should appear as each required element is completed. You can now claim your credit.

6. Look for your profession on the right side of the screen (under Achievements) and click the appropriate Claim button.

 CPE Credit: To claim continuing pharmacy education (CPE) credit, you will need to enter your NABP e-Profile ID, birth month, and birth day. Once you have entered this information the first time, it will auto fill in the future. Please note: All CPE credit processed on the eLearning site will be reported directly to CPE Monitor.

7. Review the information for the credit you are claiming. If all information appears to be correct, check the box at the bottom and click Claim. You will see a message if there are any problems claiming your credit.

8. After successfully claiming credit, you may print your statement of credit by clicking on Print. If you require a reprint of a statement of credit, you can return here at any time to print a duplicate. Please note that for CPE credit, printed statements may not be necessary because your credit will be reported directly to CPE Monitor.

<table>
<thead>
<tr>
<th>Date of Activity</th>
<th>Activity Title</th>
<th>Enrollment Code</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, April 12, 2013</td>
<td>Achieving Hemostasis in the Operating Room and Critical Care Setting: What the Pharmacist Needs to Know</td>
<td>_ _ _ _ _</td>
<td>1.0</td>
</tr>
</tbody>
</table>

NEED HELP? Contact ASHP Advantage at eLearning@ashp.org.
Achieving Hemostasis in the Operating Room and Critical Care Setting: What the Pharmacist Needs to Know

Bradley A. Boucher, Pharm.D., FCCP, FCCM, BCPS
Professor of Clinical Pharmacy and Associate Professor Neurosurgery
University of Tennessee Heath Science Center

Learning Objectives

- Discuss the clinical and economic impact of surgical complications that result in bleeding and transfusion.
- Demonstrate knowledge of local and systemic hemostatic agents, including clinical, safety, economic, and regulatory factors.
- Describe the role of the health-system pharmacist in the use of hemostatic agents to manage surgical bleeding.

Biologic Processes of Hemostasis

- Clotting is complicated process
 - Platelet-mediated primary hemostasis
 - Thrombin generation
 - Conversion of fibrinogen to fibrin
 - Stable fibrin and platelet network or clot produced
- Complex interaction between vascular wall, platelets, coagulation factors, fibrinolysis
- Response to traumatic or surgical injury

The Coagulation Cascade

Cell-Based Coagulation Model

Newer Complement to Cascade Model

- Integrates components from cascade model
- Consists of 3 overlapping phases, each involving thrombin
 - Initiation
 - Tissue factor primary initiator of coagulation
 - Amplification (priming)
 - Critical role of thrombin activating platelets, activation of FV, FXI; cleavage of FXIII
 - Propagation
 - Large amounts of thrombin generation, clot formation
 - Thrombin (Fila) active in all phases

Maintaining Hemostasis

Procoagulants
Antifibrinolytics
Anticoagulants
Fibrinolytics
Consequences of Perioperative Bleeding

- **Clinical consequences**
 - Reduction in oxygen delivery
 - Increased morbidity
 - Increased mortality
- **Economic consequences**
 - Increased duration of operative procedure; returns to the OR
 - Transfusions of blood products, hemostatic costs, clotting time tests
 - Prolonged LOS

Prothrombin Complex Concentrates

- Concentration of coagulation factors II, VII, IX, X
 - 3-factor PCCs (lack FVII)
 - 4-factor PCCS (preferred — presently not available in U.S.)
- Most countries outside U.S. use PCCs vs. FFP as primary treatment for warfarin reversal
 - Quicker for INR correction
 - Small infusion volume
 - No need for cross-matching
- Low levels of evidence (?)

Blood Transfusion Truism

“Blood transfusion is like marriage: it should not be entered upon lightly, unadvisedly or wantonly or more often than is absolutely necessary.”

- Robert Beal
 Former Director, Blood Department
 International Federation of Red Cross/Red Crescent Societies

Risks of Allogeneic Transfusions

- **Infectious complications**
 - Viral (HIV-1, -2, HBV, HCV, others)
 - Less than 1:1,000,000 units transfused
 - Bacterial
 - 1:2000-3000 platelet transfusions
- **Mistransfusions**
 - Approximately 1:12,000 – 19,000 units transfused
- **Transfusion-related complications**
 - Acute lung injury (TRALI)
 - Leading cause of transfusion-related morbidity and mortality: 1:500 platelet transfusions, 1:1000-5000 plasma, RBC transfusions

Risks of Allogeneic Transfusions (cont.)

- **Transfusion-related immunomodulation (TRIM)**
- **Transfusion-associated circulatory overload (TACO)**
- **Potential risks associated with use of RBC stored for longer than 28 days include**
 - Increased DVT: 34.5% (old blood) vs. 16.7% (new blood)
 - Increased mortality: 26.7% (old blood) vs. 13.9% (new blood)

RBC Transfusion Adult Trauma and Critical Care Clinical Practice Guideline (2009)

- Developed by joint taskforce of EAST and ACCM
- Key recommendations
 - Restrictive transfusion trigger (Hgb < 7 g/dL) although should not be sole transfusion determinant
 - Use single RBC transfusion units in the absence of acute hemorrhage
 - Avoid transfusions in patients at risk for ALI or ARDS

EAST = Eastern Association for Surgery of Trauma
ACCM = American College of Critical Care Medicine
ALI = acute lung injury
ARDS = acute respiratory distress syndrome

CDC Blood Transfusion Surveillance Program

- First national surveillance system to monitor adverse events in patients receiving blood products
- Program goals: summarize standardized data to better understand prevention of transfusion-related events, reduce healthcare costs
- CDC encouraging healthcare facilities in U.S. to enroll in surveillance program

Kuehn BM. JAMA. 2010; 303:1467.

Joint Commission

- Patient Blood Management Performance Measures Project
- Implementation Guide published in 2011
- Purpose: identify, develop and test set of standardized measures to assess consistent and efficacious use of blood transfusions in hospitals

The Joint Commission. Patient blood management performance measures project. (URL in handout).

Minimization of Blood Products: Preoperative and Intraoperative Planning

- Discontinue anticoagulants including NSAIDS, antiplatelet agents, herbas
- Minimize blood draws
- Anemia tolerance: lower transfusion trigger
- Minimally invasive procedures: laparoscopy, robotics
- Iron therapy: enteral/parenteral
- Administration of erythropoiesis-stimulating agents

Local Hemostatic Agents

- Useful adjunct to surgical care for improved outcomes
- Identified by FDA as device intended to produce hemostasis by accelerating the clotting process of blood
- Available in a variety of forms
- Used in conjunction with collagen, gelatin, cellulose matrices

Ideal Local Hemostat Qualities

- Prompt and reliable bleeding control
- Ease of storage
- Easy preparation
- Immediate availability and usability
- Reduced OR time for surgical staff

Local Hemostats:

Classification Based on Functional Characteristics

- Mechanical hemostats (passive)
 - Gelatin
 - Collagen
 - Regenerated cellulose
 - Polysaccharide spheres
- Flowable hemostats (combination)
 - Gelatin granules + thrombin
- Adhesives
 - Cyanoacrylate
 - Albumin + glutaraldehyde
 - Octyl and butyl lactoyl cyanoacrylate
- Active hemostats: topical thrombins (3 biologic origins)
 - Bovine
 - Pooled human plasma-derived
 - Recombinant human
- Sealants
 - Human plasma-derived fibrinogen + thrombin
 - Fibrin sealant (pooled human plasma)
- Bovine collagen, bovine thrombin for mixing with autologous plasma.
 - PEG polymers

Mechanical Agents

- Gelatin foams (*Gelfilm, Gelfoam, Surgifoam*)
 - Provide physical matrix for initiation of clotting
 - Film, sponge, powder forms
- Oxidized cellulose (*Surgicel Fibrillar, Surgicel Nu-Knit*)
 - Superior handling compared to gel foams
 - Low pH, resulting in antimicrobial effect against a variety of pathogenic organisms
- Microfibrillar collagen (*Avitene, Instat, Helitene, Helistat*)
 - Conforms well to irregular surfaces
 - Provides for large surface area
- Polysaccharide spheres (*Arista, Hemostase, Vitasure*)

Active Agents: Thrombin

- Bovine thrombin (*Thrombin-JMI*)
- Plasma-derived thrombin (*Evithrom*)
- Recombinant thrombin (*Recothrom*)

Acquired Specific-Factor Inhibitors:

Bovine Thrombin-Associated Coagulopathy

- Boxed warning on bovine thrombin preparations notes occasional association with coagulopathies
 - Range from laboratory abnormalities to serious bleeding
- Related to antibodies against bovine thrombin and/or factor V that cross-react with human coagulation factors
- True incidence of coagulopathy associated with bovine thrombin is unknown
- Antigen exposure may not be documented

Flowables (*FloSeal, Surgiflo*)

- Contain bovine or porcine gelatin matrix
- Possible addition of topical thrombin
- Effective in difficult-to-reach surfaces, wet surgical field
- Conforms to topography of underlying tissue

Fagan NL et al. JUS Pharm. 2010; 35(11):HS2-HSB.

Sealants
- Fibrin Sealants: thrombin + fibrinogen (Tisseal, Evicel, Tachosil, Evarest)
 - FDA approved first commercial hemostat/sealant in 1989
 - 2 components interact during application to form stable fibrin clot
 - Effective for localized and diffuse bleeding.
- Fibrin sealant: suspension of bovine collagen, bovine thrombin for mixing with autologous plasma (Vitagel)

Other Local Sealants, Adhesives
- Form barrier to flow of liquids including blood
- Local sealant: PEG polymers (Coseal, Duraseal, Progel)
- Local sealants/Adhesives
 - Cyanacylates (Dermabond Advanced, Indermil, Histoacryl)
 - Albumin and Glutaraldehyde (BioGlue)
 - Octyl and butyl lactoyl cyanoacrylate (Omnex)

Anticoagulant Reversal Agents
- Vitamin K
 - Reversal of warfarin
- Protamine
 - Reversal of unfractionated heparin (not low molecular weight heparin products)
 - Potential for adverse reactions, including anaphylaxis, acute pulmonary vasoconstriction, hypotension

Antifibrinolytic Agents: The Lysine Analogs
- Indications: hemorrhaging in hemophilia
- Mechanism of action: competitively inhibit activation of plasminogen to plasmin
- Epsilon aminocaproic acid
- Tranexamic acid
 - CRASH-2: Prospective, randomized, controlled trial of tranexamic acid or placebo in adult trauma patients with, or at risk of, significant bleeding within 8 hours of injury
 - All-cause mortality: 14.5% tranexamic acid group, 16.0% placebo group (P=.0035); no significant differences in vascular occlusive events except MI favoring tranexamic acid
 - Conclusion: should be considered for use in bleeding trauma patients

Systemic Pharmacologic Hemostatic Agents

Desmopressin
- Analog of vasopressin
- Stimulates release of vWF multimers from endothelial cells
- Prevent or control bleeding in patients with von Willebrand syndrome
- Cochrane Library review of surgical patients: no benefit from administration of desmopressin to cardiac surgery patients

\[\text{vWF} = \text{von Willebrand factor} \]
Recombinant Factor VIIa (rFVIIa)

- Indication: treatment of bleeding episodes in hemophilia A or B with inhibitors to factor VIII or IX
- Off-label uses: uncontrolled, life-threatening bleeding
- Dosing: wide range for off-label uses (15 to 400 mcg/kg)
- Safety: risk of thromboembolic events
- Pharmacoeconomics: some evidence that high acquisition cost offset by reduced blood product use, decreased morbidity, mortality

Recombinant Factor VIIa (cont.)

- Pharmacoeconomics: uncertain hemostatic effectiveness either prophylactically (6 RCTs) or therapeutically (7 RCTs) in patients without hemophilia
- Meta-analysis of 10 case series in major abdominal surgery patients: reduction or cessation of bleeding in 73.2% patients; survival in 66% responders (19 of 29 vs. 10% nonresponders (1 of 10)
- CONTROL Trial: Phase III randomized clinical trial of rFVIIa vs. placebo in trauma patients with refractory hemorrhage
 - rFVIIa group (n=273) dose: 200 mcg/kg, then 100 mcg/kg at 1 and 3 hours, or placebo (n=300)
 - Results: no differences in mortality for blunt or penetrating trauma patients (p>0.05); significant reduction in RBC transfusions in rFVIIa group (p=0.04), no difference in thrombotic adverse events
- Overall equivocal risk/benefit ratio for off-label indications

Pharmacist Roles in Surgical Hemostasis

Pharmacy and Therapeutics Committee

- Evaluative
 - Appraisal of published efficacy, safety data relative to hemostatic products undergoing formulary review
 - Hemostatic agent class reviews
 - Preparation of drug monographs including storage requirements, pharmacoeconomic evaluations
- Advisory
 - Provision of general safety information (e.g., ISMP, FDA newsletter)
 - Hospital wide alerts, sentinel events

Distribution, Monitoring

- Create safe use/handling protocols
 - Labeling, addition of auxiliary warning labels e.g., “do not inject” for local hemostatic agents
 - Storage, preparation
- Surveillance
 - Hemostatic medication-use evaluation
 - Adverse event reporting
- Monitoring of hemostatic agents entering institution via central supply versus pharmacy department

Patient Care

- Knowledge of bleeding causes, consequences and hemostasis
- Familiarity with characteristics, clinical use of hemostatic agents
 - Blood products
 - Local agents
 - Systemic agents
- Development of therapeutic guidelines, pathways
- Education: inservices, newsletters, institutional websites

Overcoming Barriers to Pharmacist Involvement in Surgical Hemostasis

- Bridge existing knowledge gap relative to bleeding, hemostatic agents
- Engage with other healthcare professionals in other departments
 - Physicians, nurses, laboratory personnel, and others interested in patient safety, clinical outcomes, quality of care, and cost
 - Direct patient care settings
- Committees: P&T, Blood Conservation, Quality Council/Patient Safety, Medication Safety

Conclusion

- Perioperative bleeding is a significant cause of increased morbidity and mortality in surgery patients
- Local and systemic hemostatic agents are important adjunctive therapy for reestablishing hemostasis in surgical patients, although have associated risks
- Pharmacists can play an important role relative to minimizing blood product use and maximizing benefits of local and systemic hemostatic agents
Achieving Hemostasis in the Operating Room and Critical Care Setting: What the Pharmacist Needs to Know

SELECTED REFERENCES

SELF-ASSESSMENT QUESTIONS

1. Which of the following risks of allogeneic red blood transfusions is considered to be the leading cause of morbidity and mortality?
 a. Bacterial or viral infection.
 b. Mistransfusion.
 c. Transfusion-related acute lung injury.
 d. Transfusion-related circulatory overload.

2. Which of the following products is an example of a mechanical local hemostat?
 a. Recombinant thrombin.
 b. Gelatin.
 c. Cyanoacrylate.
 d. Polyethylene glycol polymers.

3. Which of the following local hemostats has been associated with immune-mediated coagulopathy?
 a. Bovine thrombin.
 b. Human pooled plasma thrombin.
 c. Recombinant human thrombin.
 d. Human pooled fibrinogen and thrombin.

4. Which of the following is a key role for pharmacists within pharmacy and therapeutic committees relative to systemic and local hemostatic agents?
 a. Placement of auxiliary labels when distributing these products.
 b. Monitoring physician prescribing patterns for these agents.
 c. Evaluation of cause of bleeding within a particular intensive care unit.
 d. Evaluation of efficacy and safety data within hemostatic agent class.

Answers
1. c
2. b
3. a
4. d