DOAC Pharmacogenomics: Learning the DOs

Trishia E. Shaw, PharmD, BCPS

Clinical Assistant Professor, Chicago State University College of Pharmacy

Ryan Lewis, PharmD Candidate 2022 Chicago State University College of Pharmacy

Disclosures

- Ryan Lewis No financial disclosures
- Trishia E. Shaw No financial disclosures

Objectives

At the end of this presentation, **pharmacist** participants should be able to:

- 1. Define the term pharmacogenomics and identify key drug metabolizing enzymes.
- 2. Review coagulation cascade and describe how oral anticoagulant medications work in the coagulation cascade.
- 3. Review current literature describing pharmacogenomic polymorphisms in the enzymes that metabolize direct oral anticoagulant medications
- 4. Explain recommendations for therapy management based on genetic polymorphism information.

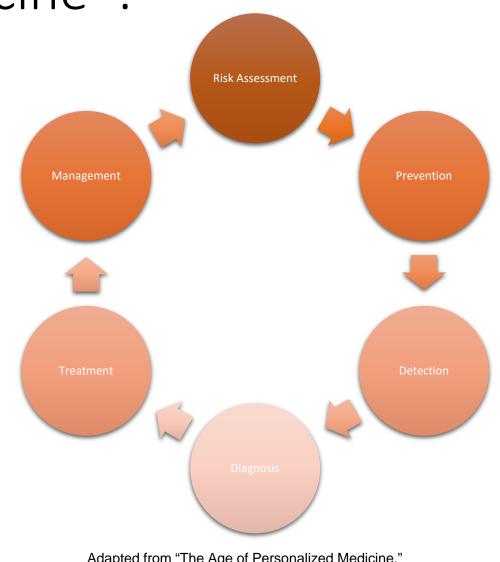
Pre-Assessment Questions

Pre-Assessment Question #1

- <u>True or False</u>: The CPIC guidelines are a resource to guide medication therapy in patients with known genetic variants in drug metabolizing enzymes.
 - A. True
 - B. False

Pre-Assessment Question #2

- <u>True or False</u>: All drugs with published genetic literature have guidelines to guide optimal medication use.
 - A. True
 - B. False



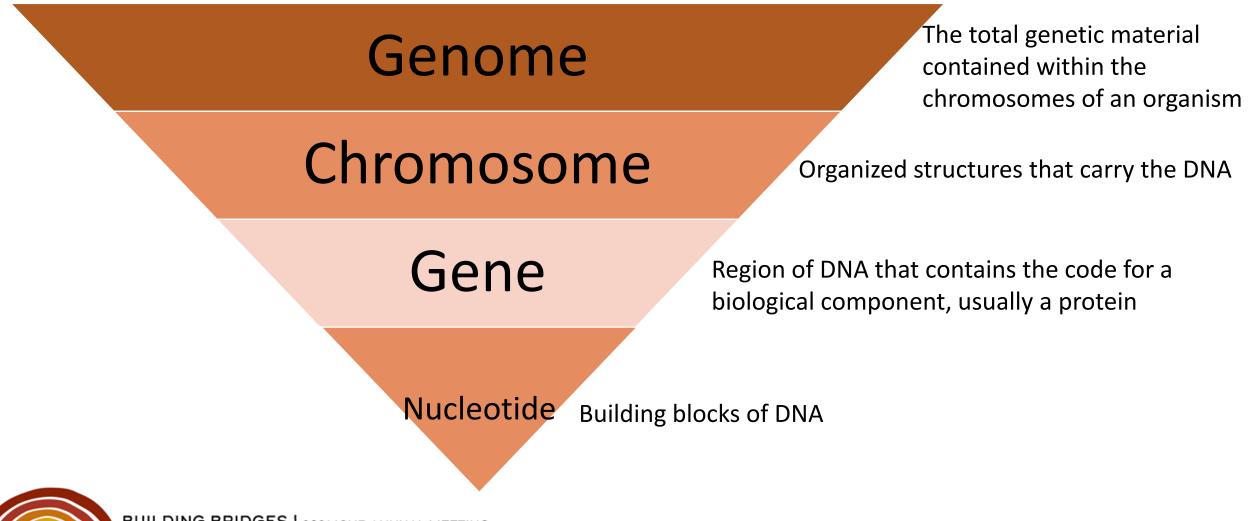
Pharmacogenomic (PGx) Basics

What is "Personalized Medicine"?

- Definition: the tailoring of medical treatment to the individual characteristics of each patient
- Multi-faceted approach to patient care

Adapted from "The Age of Personalized Medicine." https://www.personalizedmedicinecoalition.org/Userfiles/PMC-Corporate/file/pmc_age_of_pmc_factsheet.pdf . Accessed 10/25/20.

Pharmacogenetics vs. Pharmacogenomics


Pharmacogenetics

Pharmaco**GENOMICS**

Study of the relationship between variations in a <u>single gene</u> and variability in drug disposition, response, and toxicity Study of the relationship between variations in <u>a large collection of</u> <u>genes (up to the whole genome)</u> and variability in drug disposition, response, and toxicity

Definition of Basic Genetic Terms

BUILDING BRIDGES 2021 ICHP ANNUAL MEETING

Pharmacogenetics Terminology

• Genetic variant

• Difference in the DNA sequence compared with a reference sequence

Polymorphism

- Genetic variant that is **common**
- Defined in 1% or more in the population

Mutation

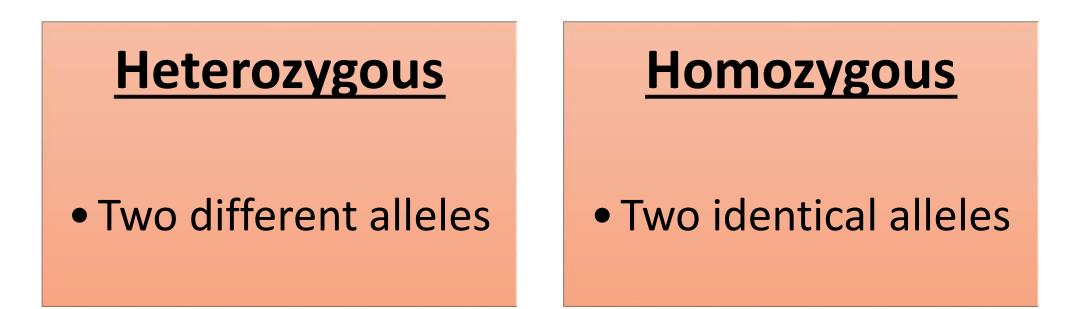
- Genetic variant that is **<u>rare</u>**
- Defined in less than 1% in the population

Allele

• One or two (or more) of a DNA sequence that is located at a specific position on a specific chromosome

Wild-Type

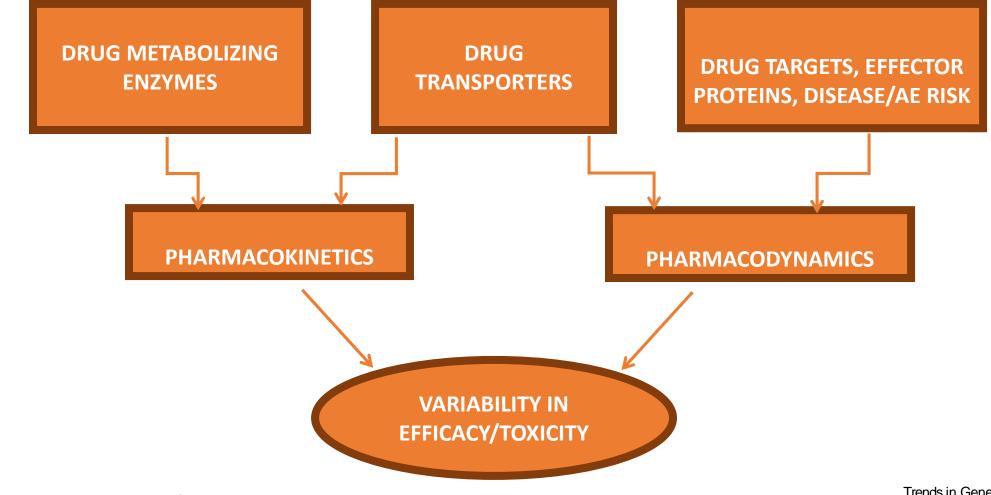
- Most common or reference allele
- "the major allele"
- Often denoted as *1


Variant

- Polymorphic allele
- "the minor allele"
- Often denoted as *N

Genotype

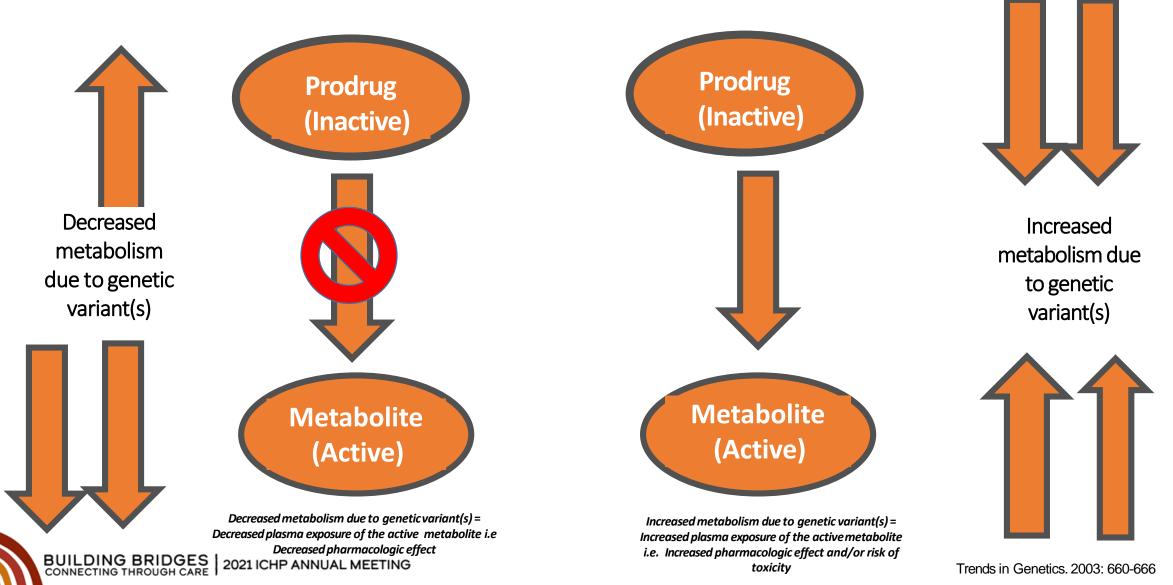
• The combination of alleles a person carries at a particular location in DNA



Phenotype

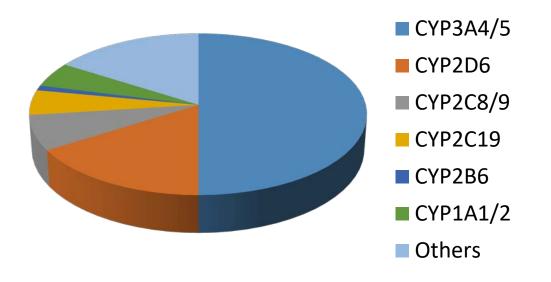
- Measurable characteristic of an organism (i.e. hair color, eye color)
- Results of genetics, environment or the combination of both
- Examples of **pharmacologic phenotypes**
 - Metabolism: ultra-rapid, extensive, intermediate, poor metabolism
 - Pharmacokinetics: plasma drug concentration, AUC, clearance, Cmax
 - Pharmacodynamics: responder vs non-responder

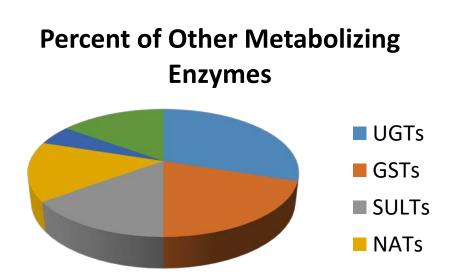
Key Clinical Pharmacologic Components in Pharmacogenomics

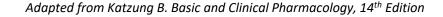


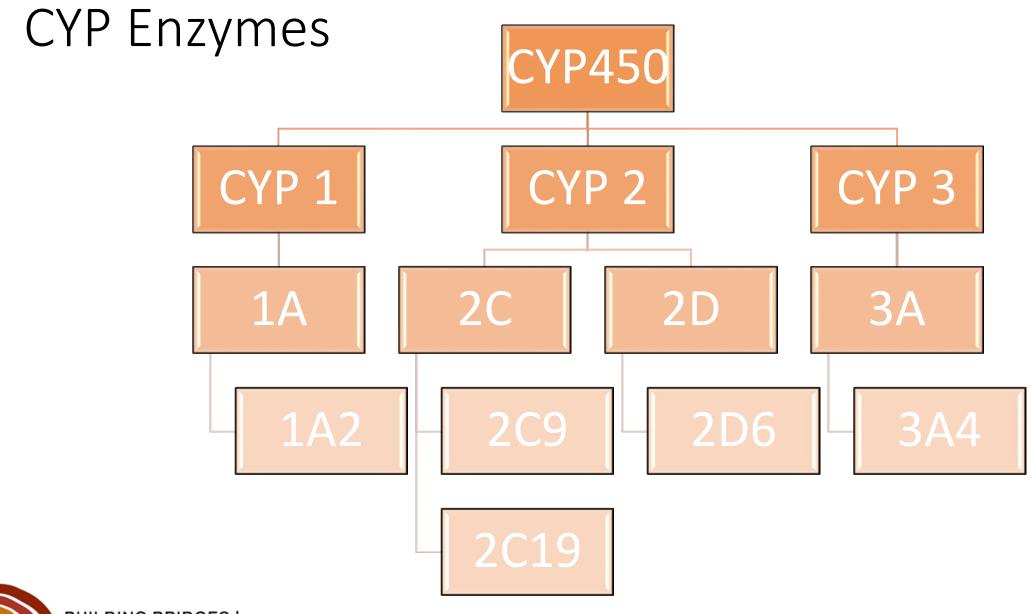
BUILDING BRIDGES 2021 ICHP ANNUAL MEETING

Trends in Genetics. 2003: 660-666




Drug Metabolism – Prodrugs

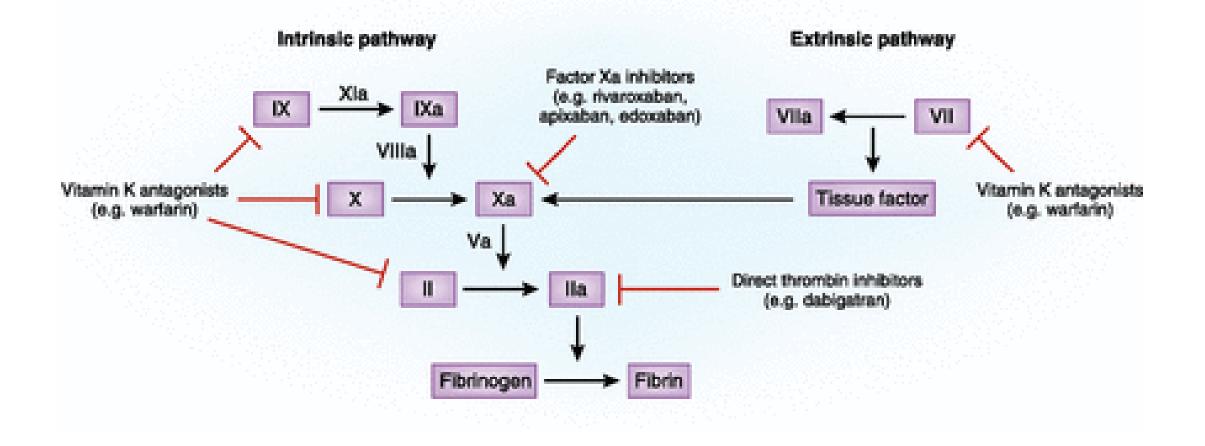



CYP Enzymes

- CYP = Cytochrome P450
- CYP1, CYP2 and CYP3 families play a major role in drug metabolism
 - Primarily in the liver, although distribution may be found in the intestine, lung, kidney and brain
- For each CYP gene, the wild-type allele is denoted at *1
 - SNPs are then sequentially numbers as they are identified (i.e. *2, *3, *4)

BUILDING BRIDGES 2021 ICHP ANNUAL MEETING

Key Drug Metabolizing Enzymes – Phenotypes


Phenotype	Description of genotype
Ultrarapid Metabolizer	An individual carrying duplications of functional alleles.
Extensive Metabolizer	 An individual carrying: two functional alleles, or two reduced function alleles, or one functional and nonfunctional allele, or one functional and reduced function allele
Intermediate Metabolizer	An individual carrying one reduced function and one nonfunctional allele.
Poor Metabolizer	An individual carrying two nonfunctional alleles.

Coagulation Basics

Coagulation Cascade – Anticoagulants

Drug and FDA Approval	Target	FDA-approved indica- tions	Available Strengths ^a	Half- life ^b	Dosing Freq- uency	Renal Dosing Adjustments	Drug Interactions	Reversal Agent
Dabigatran Approved Oct 2010	Thrombin	NVAF, treatment Secondary prevention of DVT and PE VTE prevention after hip replacement	75 mg 100 mg 150 mg	12-17 hr	Twice Daily	Contraindicated if CrCl < 30 mL/min	PPI, antacids, dronedar- one, P-gp inhibitors	Praxabind
Rivaroxaban Approved July 2011	Factor Xa	NVAF, treatment and secondary prevention of DVT and PE, VTE prevention after hip and knee replacement	10 mg 15 mg 20 mg	9 hr	Once Daily ^c	Avoid use if CrCl < 30 mL/min	CYP3A4 inhibitors, P-gp inhibi- tors	AndexXa
Apixaban Approved Dec 2012	Factor Xa	NVAF, treatment and secondary prevention of DVT and PE, VTE prevention after hip and knee replacement	2.5 mg 5 mg	12 hr	Twice Daily ^c	Limited data for serum creatinine > 2.5 mg/dL and CrCl < 25 mL/min	CYP3A4 inhibitors, P-gp inhibi- tors	AndexXa
Edoxaban Approved Jan 2015	Factor Xa	NVAF, treatment of DVT and PE	15 mg 30 mg 60 mg	10-14 hr	Once Daily	CrCl < 15-50mL/min: 30 mg once daily CrCl < 15 mL/min: not recommended	CYP3A4 inhibitors, P-gp inhibi- tors	Under develop- ment. PCC for emergen- cies
Betrixaban June 2017	Factor Xa	Prevention of DVT and PE in hospitalized, medically-ill patients	40 mg 80 mg	20 hr	Once Daily ^c	Not reported	Not reported	Under develop- ment. PCC for emergen- cies

^a Recommended strength varies on indication, ^b Assuming normal renal function, ^c May require higher, more frequency dosing at initiation based on indication.

Abbreviations: CrCl, creatinine clearance calculated by the Cockcroft-Gault formula; CYP, cytochrome P450; DVT, deep vein thrombosis; NVAF: nonvalvular atrial fibrillation; PCC, prothrombin complex concentrate; PE, pulmonary embolism, P-gp, P-Glycoprotein; PPI, proton pump inhibitors; VTE: venous thromboembolism.

DOAC Pharmacogenomics

Key Genes that Encode the Enzymes that Metabolize DOACs

CYP 3A4/5	CES1	ABCB1	CYP 2J2	SULT1A1
 Metabolize Dabigatran Apixaban Rivaroxaban 	 Carboxylesterase 1 Metabolize Dabigatran 	 Also known as P- Glycoprotein (Pgp) Metabolize Dabigatran Rivaroxaban Apixaban 	 Metabolize Apixaban Rivaroxaban 	 Sulfotransferases Metabolize Apixaban

Key Genes that Encode the Enzymes that Metabolize DOACs

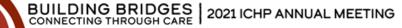
DOAC PGx Literature Review

- Ing Lorenzi K, et al. *Rivaroxaban-Induced Hemorrhage Associated with ABCB1 Genetic Defect*. Front. Pharmacol. 2016;7:494.
- Nakagawa J, et al. Impact of gene polymorphisms in drug-metabolizing enzymes and transporters on trough concentrations of rivaroxaban in patients with atrial fibrillation. Basic Clin Pharmacol. Toxicol. 2021; 128:297-304.
- Sychev DA, et al. *The impact of ABCB1 (rs1045642 and rs4148738) and CES1 (rs2244613) gene polymorphisms on dabigatran equilibrium peak concentration in patients after total knee arthroplasty.* Pharmacogenomics and Personalized Medicine. 2018;11:127-137.
- Rosian AN, et al. An Exploratory Association Analysis of ABCB1 rs1045642 and ABCB1 rs4148738 with Non-Major Bleeding Risk in Atrial Fibrillation Patients treated with Dabigatran or Apixaban. J. Pers. Med. 2020,10,133; doi:10.3390/jpm10030133.

Clinical PGx Recommendations for the DOACs

• Clinical review conducted by Tseng and colleagues determined the following:

Dabigatran


- Large body of evidence suggesting role of pharmacogenomic testing to determine risk of minor bleeding in patients
- Caution with CYP 3A4 inducers and inhibitors

Rivaroxaban

- NO strong evidence for use of pharmacogenomic testing in patients
- Caution with CYP 3A4 inducers and inhibitors

Apixaban

- NO strong evidence for use of pharmacogenomic testing in patients
- Caution with CYP 3A4 inducers and inhibitors

Cardiovasc Drugs Ther. 2018: 32;121-126

Assessment Questions

- <u>True or False</u>: Pharmacogenetic information is widely available for all oral anticoagulants and is used to guide clinical decision-making.
 - A. True
 - B. False

- Direct oral anticoagulants exerts their pharmacologic effects on which of the following targets in the coagulation cascade? (Select all that apply)
 - A. Factor VII
 - B. Factor Xa
 - C. Factor Va
 - D. Factor IIa
 - E. B and D

- Genetic variations in which of the following enzymes are responsible for variability in dabigatran metabolism?
 - A. CYP2C19
 - B. CYP2C9
 - C. CYP2J2
 - D. CYP3A5


- Which of the following enzymes are not involved in the metabolism of the direct oral anticoagulants?
 - A. CYP1A2
 - B. CYP3A5
 - C. ABCB1
 - D. CYP2J2

- HM is a 45 y/o old male who has recently undergone genotyping testing as a part of a comprehensive medical examination. His results indicate that he has a variant allele (SNP = rs41487348) at the gene for the ABCB1 enzyme. Which of the following is true for HM and dabigatran dosing?
 - A. HM may experience a decreased risk of bleeding
 - B. HM may experience an increased risk gastrointestinal effects
 - C. HM may experience a decreased risk of gastrointestinal effects
 - D. HM may experience an increased risk of bleeding

Questions?

