	Canagliflozin	Dapagliflozin	Empagliflozin
eGFR Cut-Off for Initiation			
Dose			
Renal Benefits			
Use in Type 2 Diabetes Only?			

SGLT"2" Good to be True? Renal Outcomes of SGLT2 Inhibitors

Kanika Bhandari, PharmD Assistant Professor of Clinical Sciences Keck Graduate Institute School of Pharmacy and Health Sciences

BUILDING BRIDGES | 2021 ICHP ANNUAL MEETING

Disclosure

- The speaker has no conflicts of interest to disclose
- Non-FDA approved indications will be discussed

BUILDING BRIDGES | 2021 ICHP ANNUAL MEETING

Learning Objectives

- Outline current guidelines and the role of SGLT2 inhibitors in kidney disease
- 2. Review the literature regarding SGLT2 inhibitors and their place in patients with kidney disease
- 3. Define optimal patients to initiate on SGLT2 inhibitors

BUILDING BRIDGES 2021 ICHP ANNUAL MEETING

Chronic Kidney Disease

- Chronic kidney disease (CKD) defined as abnormalities of kidney structure or function for > 3 months
- Diabetes (DM) is the leading cause of kidney failure

BUILDING BRIDGES 2021 ICHP ANNUAL MEETING

KDIGO Diabetes Work Group. Kidney Int. 2020 Oct;98(45):51-5115. Alicic RZ, et al. Clin J Am Soc Nephrol. 2017 Dec 7;12(12):2032-2045.

KDIGO 2020 Guideline for DM in CKD Argeliniate Benedicts Social Service Serv

Assessment Question #1 In patients with type 2 diabetes and CKD, the 2020 KDIGO guideline recommends: A. starting an SGLT2 inhibitor in all patients regardless of eGFR B. continuing an SGLT2 inhibitor even with a reversible decrease in eGFR C. maintaining SGLT2 inhibitor therapy even if patients require dialysis D. initiating any SGLT2 inhibitor for proposed renal benefits

DENCE			-	-
Ou	itcome	Canagliflozin (N = 2202)	Placebo (N = 2199)	HR (95% CI)
Primar	•	245	340	0.70 (0.59–0.82)
Doubli	ng of SCr, n	118	188	0.60 (0.48-0.76)
ESRD, r	1	116	165	0.68 (0.54-0.86)
Renal [Death, n	2	5	-

- Trial stopped early on a planned interim analysis
- 4,401 patients randomized with median follow-up 2.62 years
- Patients with type 2 diabetes and CKD who received canagliflozin had lower risk of primary composite outcome

BUILDING BRIDGES | 2021 ICHP ANNUAL MEETING 13
Perkevic V, et al. N Engl J Med. 2021 p. 11,2180(24) 2295-27

eGFR Cut-Off for	1	
Initiation	<u>≥</u> 30	
Dose	100 mg daily	
Renal Benefits	Lower risk of ESRD including need for HD, and increasing SCr	
Use in Type 2 Diabetes Only?	Yes	

	Dapagliflozin in Patients with Chronic Kidney Disease
Objective	Assess the effect of dapagliflozin in patients with CKD, with or without type 2 diabetes
Design	Randomized, double-blind, placebo-controlled, multicenter trial
Inclusion	 Adults with or without type 2 diabetes and eGFR 25 to 75 ml/min/1.73m2, and urinary albumin-to-creatinine ratio of 200 to 5000 mg/g Receiving ACEI or ARB for ≥ 4 weeks
Intervention	Dapagliflozin 10 mg daily vs matching placebo
N	4,304
Outcome(s)	Primary composite: first occurrence of 50% decline in eGFR, new ESRD or death from renal or CV causes Secondary composite: same as primary composite sans death from CV causes

Outcome	Dapagliflozin, n (N = 2152)	Placebo, n (N = 2152)	HR (95% CI)
Primary Composite, n (%)	197 (9.2)	312 (14.5)	0.61 (0.51–0.72)
Secondary Composite, n (%)	142 (6.6)	243 (11.3)	0.56 (0.45-0.68)
CV Death or HF Hospitalization, n (%)	100 (4.6)	138 (6.4)	0.71 (0.55–0.92)
dapagliflozin	all components of c	·	favored
 Number neede 	d to treat for prima	ry outcome = 19	

	Canagliflozin	Dapagliflozin	Empagliflozin
eGFR Cut-Off for Initiation	≥ 30	≥ 25 (DAPA-CKD)	
Dose	100 mg daily	10 mg daily	
Renal Benefits	Lower risk of ESRD including need for HD, and increasing SCr	Slower decline in eGFR, lower risk of new ESRD	
Use in Type 2 Diabetes Only?	Yes	No (as per DAPA-CKD)	

Decline in eGFR, ml/min/1.73m ²
n (%) 30 (1.6) 58 (3.1) 0.50 (0.32–0.77) Empagliflozin slowed the rate of decline in the eGFR
 Not included in testing hierarchy No prespecified subgroup analysis comparing diabetes vs no diabetes

	Canagliflozin	Dapagliflozin	Empagliflozin
eGFR Cut-Off for Initiation	<u>></u> 30	≥ 25 (DAPA-CKD)	≥ 30 (EMPA-REG OUTCOME) ≥ 20 (EMPEROR- Reduced)
Dose	100 mg daily	10 mg daily	10 mg daily
Renal Benefits	Lower risk of ESRD including need for HD, and increasing SCr	Slower decline in eGFR, lower risk of new ESRD	Lower risk of worsening nephropathy, slower decline in eGFR
Use in Type 2 Diabetes Only?	Yes	No (as per DAPA-CKD)	No (as per EMPEROR Reduced, but no pre- specified subgroup)

Assessment Question #2 Landmark trials regarding renal outcomes have demonstrated that all SGLT2 inhibitors: A. Have the same eGFR cut off of ≥ 30 ml/min/1.73m² B. Can be used in patients with or without type 2 diabetes C. Have shown a slower decline in eGFR or doubling of SCr D. Need to be titrated to their maximum and optimal dose

Questions

BUILDING BRIDGES 2021 ICHP ANNUAL MEETING