	Canagliflozin	Dapagliflozin	Empagliflozin
eGFR Cut-Off for Initiation			
Dose			
Renal Benefits			
Use in Type 2 Diabetes Only?			

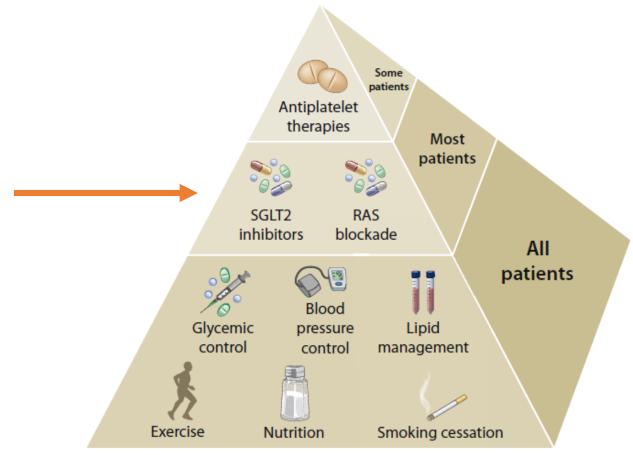
SGLT"2" Good to be True? Renal Outcomes of SGLT2 Inhibitors

Kanika Bhandari, PharmD
Assistant Professor of Clinical Sciences
Keck Graduate Institute
School of Pharmacy and Health Sciences

Disclosure

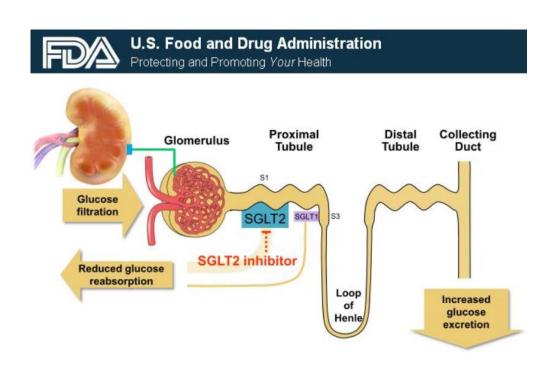
- The speaker has no conflicts of interest to disclose
- Non-FDA approved indications will be discussed

Learning Objectives


- Outline current guidelines and the role of SGLT2 inhibitors in kidney disease
- 2. Review the literature regarding SGLT2 inhibitors and their place in patients with kidney disease
- 3. Define optimal patients to initiate on SGLT2 inhibitors

Chronic Kidney Disease

- Chronic kidney disease (CKD) defined as abnormalities of kidney structure or function for > 3 months
- Diabetes (DM) is the leading cause of kidney failure



KDIGO 2020 Guideline for DM in CKD

SGLT2 Inhibitors

Drugs	Canagliflozin Dapagliflozin Empagliflozin	Ertugluflozin Sotagliflozin*
HbA1c Reduction	0.5-1%	
MOA	Inhibits SGLT2 in the tubules, thus reduci of filtered glucose	•
Side Effects	Risk of UTI, increase dehydration	d urination,
Notes	Previous BBW for ca warned of higher ris amputations; Remov	k of lower extremity

^{*}not FDA approved; SGLT1 and SGLT2 inhibitor

Renal Protective Mechanism

SGLT2 inhibitors reduce sodium reabsorption in the proximal tubule

Causes afferent arteriole vasoconstriction

Leads to a reduction in hyperfiltration

KDIGO 2020 Guideline for DM in CKD

- Most patients with type 2 diabetes, CKD, and eGFR ≥ 30 ml/min/1.73m² would benefit from treatment with both metformin and an SGLT2 inhibitor
- Prioritize SGLT2 inhibitors with documented kidney or cardiovascular benefits
- A reversible decrease in eGFR with initiation of SGLT2 inhibitor treatment may occur and is not an indication to stop therapy
- It is reasonable to continue an SGLT2 inhibitor even if the eGFR falls below 30 ml/min/1.73m², unless renal replacement therapy is needed

Assessment Question #1

In patients with type 2 diabetes and CKD, the 2020 KDIGO guideline recommends:

- A. starting an SGLT2 inhibitor in all patients regardless of eGFR
- B. continuing an SGLT2 inhibitor even with a reversible decrease in eGFR
- C. maintaining SGLT2 inhibitor therapy even if patients require dialysis
- D. initiating any SGLT2 inhibitor for proposed renal benefits

Literature

Canagliflozin

Dapagliflozin

Empagliflozin

Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes

Inclusion	Type 2 diabetes and high cardiovascular risk, eGFR > 30 ml/min/1.73m ²	
Intervention	Canagliflozin 100 mg daily vs matching placebo	
Renal Outcome(s)	 Progression of albuminuria Composite renal outcome of 40% reduction in eGFR, need for renal replacement therapy (RRT), or death from renal causes 	
N	10,142	
Results	 Less progression of albuminuria in canagliflozin group (HR 0.73, 95% CI 0.67–0.79) Lower incidence of composite renal outcome in canagliflozin group (HR 0.60, 95% CI 0.47–0.77) 	
Conclusion	Patients treated with canagliflozin had a lower risk of progression of albuminuria and loss of kidney function versus placebo. Outcomes not viewed as significant on the basis of the prespecified testing sequence.	

Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy

Objective	Assess the renal effects of canagliflozin in patients with type 2 diabetes
Design	Randomized, double-blind, placebo-controlled, multicenter trial
Inclusion	 Type 2 diabetes, CKD with eGFR 30 to 90 ml/min/1.73m² and albuminuria Receiving angiotensin converting enzyme inhibitor (ACEi) or angiotensin receptor blocker (ARB) for > 4 weeks
Intervention	Canagliflozin 100 mg daily vs matching placebo
N	4,401
Outcome(s)	Primary: composite of end stage renal disease (ESRD), doubling of serum creatinine (SCr) from baseline, or death from renal or cardiovascular (CV) disease

Outcome	Canagliflozin (N = 2202)	Placebo (N = 2199)	HR (95% CI)
Primary Composite, n	245	340	0.70 (0.59–0.82)
Doubling of SCr, n	118	188	0.60 (0.48-0.76)
ESRD, n	116	165	0.68 (0.54–0.86)
Renal Death, n	2	5	-

- Trial stopped early on a planned interim analysis
- 4,401 patients randomized with median follow-up 2.62 years
- Patients with type 2 diabetes and CKD who received canagliflozin had lower risk of primary composite outcome

	Canagliflozin	Dapagliflozin	Empagliflozin
eGFR Cut-Off for Initiation	<u>></u> 30		
Dose	100 mg daily		
Renal Benefits	Lower risk of ESRD including need for HD, and increasing SCr		
Use in Type 2 Diabetes Only?	Yes		

Literature

Canagliflozin

Dapagliflozin

Empagliflozin

Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes

Inclusion	Type 2 diabetes and risk factors for or having CV disease, CrCl > 60 ml/min
Intervention	Dapagliflozin 10 mg daily vs matching placebo
Renal Outcome(s)	Renal composite outcome: \geq 40% decrease in eGFR to < 60 ml/min/1.73m ² , new ESRD, or death from renal cause
N	17,160
Results	 Lower incidence of composite renal outcome in dapagliflozin group 1.5% dapagliflozin vs 2.8% placebo (HR 0.53, 95% CI 0.43-0.66)
Conclusion	Dapagliflozin resulted in a lower incidence of eGFR decrease, new ESRD, or death from renal cause, supporting a possible lower rate of adverse renal outcomes in patients with type 2 diabetes.

Dapagliflozin in Patients with Chronic Kidney Disease

Objective	Assess the effect of dapagliflozin in patients with CKD, with or without type 2 diabetes	
Design	Randomized, double-blind, placebo-controlled, multicenter trial	
Inclusion	 Adults with or without type 2 diabetes and eGFR 25 to 75 ml/min/1.73m2, and urinary albumin-to-creatinine ratio of 200 to 5000 mg/g Receiving ACEi or ARB for > 4 weeks 	
Intervention	Dapagliflozin 10 mg daily vs matching placebo	
N	4,304	
Outcome(s)	 Primary composite: first occurrence of 50% decline in eGFR, new ESRD, or death from renal or CV causes Secondary composite: same as primary composite sans death from CV causes 	

Outcome	Dapagliflozin, n (N = 2152)	Placebo, n (N = 2152)	HR (95% CI)
Primary Composite, n (%)	197 (9.2)	312 (14.5)	0.61 (0.51–0.72)
Secondary Composite, n (%)	142 (6.6)	243 (11.3)	0.56 (0.45–0.68)
CV Death or HF Hospitalization, n (%)	100 (4.6)	138 (6.4)	0.71 (0.55–0.92)

- Event rates for all components of composite outcome favored dapagliflozin
- Number needed to treat for primary outcome = 19

Subgroup	Dapagliflozin	Placebo		Hazard Ratio	(95% CI)
	no. of participa	ints/total no.			
All participants	197/2152	312/2152		⊢= ⊣	0.61 (0.51-0.72)
Type 2 diabetes					
Yes	152/1455	229/1451		⊢= −	0.64 (0.52-0.79)
No	45/697	83/701		├──	0.50 (0.35-0.72)
			0.1	0.5	1.0 2.0
			•	Dapagliflozin Better	Placebo Better

- Effect of dapagliflozin on primary outcome consistent across prespecified subgroups
- Renal benefit in CKD patients with or without type 2 diabetes
- Patients with CKD, regardless of type 2 diabetes, who received dapagliflozin had lower risk of primary composite outcome

	Canagliflozin	Dapagliflozin	Empagliflozin
eGFR Cut-Off for Initiation	<u>></u> 30	≥ 25 (DAPA-CKD)	
Dose	100 mg daily	10 mg daily	
Renal Benefits	Lower risk of ESRD including need for HD, and increasing SCr	Slower decline in eGFR, lower risk of new ESRD	
Use in Type 2 Diabetes Only?	Yes	No (as per DAPA-CKD)	

Literature

Canagliflozin

Dapagliflozin

Empagliflozin

Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes

Inclusion	Type 2 diabetes and established CV disease, eGFR > 30 ml/min/1.73m ²
Intervention	Empagliflozin 10 mg or 25 mg daily vs matching placebo
Renal Outcome(s)	Incident or worsening nephropathy (progression to macroalbuminuria, doubling of SCr and eGFR \leq 45, initiation of RRT, death from renal disease)
N	7,020
Results	 Incident or worsening nephropathy: 12.7% empagliflozin vs 18.8% placebo (P < 0.001, HR 0.61, 95% CI 0.53-0.70) Consistent benefit of empagliflozin across the two doses
Conclusion	Patients with type 2 diabetes at high risk for CV events who received empagliflozin had a lower rate of incident or worsening nephropathy as compared to placebo. Various renal outcomes, including progression to macroalbuminuria, doubling of SCr, and initiation of RRT were also lower.

Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure

Objective	Assess the effects of empagliflozin in patients with heart failure with reduced ejection fraction (HFrEF)	
Design	Randomized, double-blind, parallel-group, placebo-controlled trial	
Inclusion	 Heart failure with reduced ejection fraction and NYHA class II-IV on guideline directed medical therapy Excluded if eGFR < 20 ml/min/1.73m² 	
Intervention	Empagliflozin 10 mg daily vs matching placebo	
N	3,730	
Renal Outcome(s)	 Rate of decline in eGFR during treatment Composite renal outcome (need for chronic dialysis, renal transplantation, or reduction of > 40% in eGFR) 	

Outcome	Empagliflozin (N = 1863)	Placebo (N = 1867)	HR (95% CI)
Decline in eGFR, ml/min/1.73m ²	-0.55 <u>+</u> 0.23	-2.28 <u>+</u> 0.23	1.73 (1.10–2.37)
Renal Composite, n (%)	30 (1.6)	58 (3.1)	0.50 (0.32–0.77)

- Empagliflozin slowed the rate of decline in the eGFR
- Risk of composite renal outcome was lower in empagliflozin group
 - Not included in testing hierarchy
- No prespecified subgroup analysis comparing diabetes vs no diabetes

	Canagliflozin	Dapagliflozin	Empagliflozin
eGFR Cut-Off for Initiation	<u>></u> 30	<u>></u> 25 (DAPA-CKD)	≥ 30 (EMPA-REG OUTCOME) ≥ 20 (EMPEROR- Reduced)
Dose	100 mg daily	10 mg daily	10 mg daily
Renal Benefits	Lower risk of ESRD including need for HD, and increasing SCr	Slower decline in eGFR, lower risk of new ESRD	Lower risk of worsening nephropathy, slower decline in eGFR
Use in Type 2 Diabetes Only?	Yes	No (as per DAPA-CKD)	No (as per EMPEROR- Reduced, but no pre- specified subgroup)

Future Studies

The Study of Heart and Kidney Protection with Empagliflozin

Renohemodynamic Effects Empagliflozin in Various Populations

EMPA-KIDNEY

Multicenter, international, randomized, double-blind, placebo-controlled trial

Objective: to assess cardio-renal outcomes in patients with CKD using empagliflozin once daily

Outcomes: time to first occurrence of kidney disease progression or cardiovascular death

Estimated study completion date: December 2022

REGROUP

Single-center, prospective, placebo-controlled, double-blind, randomized, cross-over trial

Objective: to investigate the effect of empagliflozin on kidney function in people with preserved or impaired renal function with or without type 2 diabetes

Outcomes: measured eGFR

Estimated study completion date: March 2022

Assessment Question #2

Landmark trials regarding renal outcomes have demonstrated that all SGLT2 inhibitors:

- A. Have the same eGFR cut off of \geq 30 ml/min/1.73m²
- B. Can be used in patients with or without type 2 diabetes
- C. Have shown a slower decline in eGFR or doubling of SCr
- D. Need to be titrated to their maximum and optimal dose

FDA Approved Indications

Canagliflozin

- Type 2 DM
- Type 2 DM with CV disease
- Diabetic kidney disease

Dapagliflozin

- Type 2 DM
- Diabetic kidney disease
- Chronic kidney disease
- HFrEF

Empagliflozin

- Type 2 DM
- Type 2 DM with CV disease

Contraindications

History of serious hypersensitivity reaction to drug

Severe renal impairment, ESRD, or dialysis

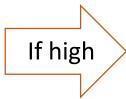
Cautions

Intravascular volume contraction, particularly in patients with renal impairment or low systolic blood pressure, those on diuretics, or the elderly

Increased incidence of bone fractures reported with canagliflozin

Hypoglycemia risk increased with insulin and insulin secretagogues (e.g., sulfonylureas)

Mycotic genital infections


Euglycemic ketoacidosis in vulnerable patients

History of osteoporosis (canagliflozin)

Who Should Receive an SGLT2 Inhibitor?

Assessment	Intervention	Follow-Up
Eligible Patients	Low-dose SGLT2 inhibitor with	- Assess adverse effects
 eGFR ≥ 30 ml/min/1.73m² 	proven benefits	- Review knowledge
	- Canagliflozin 100 mg	- Anticipate an acute drop in
High priority features	- Dapagliflozin 10 mg	eGFR, which is generally not
 UACR ≥ 200 mg/g 	- Empagliflozin 10 mg	a reason to stop the SGLT2
- Heart failure		inhibitor
	Education	
Potential Contraindications	- Sick day protocol	
 Genital infection risk 	- Perioperative care	
- Diabetic ketoacidosis	- Foot care	
- Foot ulcers		
- Immunosuppression		

Assessment	Intervention	Follow-Up
Hypoglycemia risk?	Education	- Ask about hypoglycemia
- Insulin or sulfonylurea	 Hypoglycemia symptoms 	- Reduce sulfonylurea or
 History of severe 	- Glycemia monitoring	insulin if needed
hypoglycemia	 Consider insulin/sulfonylurea 	
 HbA1c at or below goal 	dose reduction	

Assessment	Intervention	Follow-Up
Volume depletion risk?Concurrent diuretic useTenuous volume statusHistory of acute kidney injury	EducationVolume depletion symptomsConsider diuretic dose reduction	Re-assess volumeReduce concomitant diuretic if needed

Patient Case

A 69 YO M with PMH type 2 DM, HTN, HLD, OSA, and back pain was referred to your clinic for declining eGFR. He was diagnosed with DM 32 years prior to referral and developed retinopathy and nephropathy over time. Urine albumin-creatinine ratio initially elevated 10 years prior. eGFR has declined over the years.

Current Labs		
UACR	2291 mg/g	
eGFR	32 ml/min/1.73m ²	
HbA1c	7.2%	
ВР	132/68	

Current Medications		
Metformin	Losartan	
Glipizide	Amlodipine	
Insulin	HCTZ	
	Spironolactone	

Assessment Question #3

Should this patient be started on an SGLT2 inhibitor?

- A. Yes, given their decline in eGFR and increase in UACR in the past years
- B. No, their HbA1c is too close to goal which increases hypoglycemia risk
- C. No, they take insulin and a sulfonylurea which increases hypoglycemia risk
- D. No, their eGFR is too close to the guideline recommended cut off

Patient Case

A 69 YO M with PMH type 2 DM, HTN, HLD, OSA, and back pain was referred to your clinic for declining eGFR. He was diagnosed with DM 32 years prior to referral and developed retinopathy and nephropathy over time. Urine albumin-creatinine ratio initially elevated 10 years prior. eGFR has declined over the years.

Current Labs		
<u>UACR</u>	2291 mg/g	
<u>eGFR</u>	32 ml/min/1.73m ²	
HbA1c	7.2%	
ВР	132/68	

Current Meds		
Metformin	Losartan	
Glipizide	Amlodipine	
Insulin	HCTZ	
	Spironolactone	

Summary

Canagliflozin, dapagliflozin, and empagliflozin have shown renal benefit in patients with type 2 diabetes and CKD

Dapagliflozin has shown renal benefit in patients with CKD with or without type 2 diabetes

SGLT2 inhibitors should be started when eGFR \geq 30 ml/min/1.73m², and can be continued until patient requires renal replacement therapy

Monitor for hypoglycemia and volume depletion risk, especially if patient taking insulin, sulfonylurea, and/or diuretics concurrently

Special Acknowledgement:

Jennifer Austin Szwak, PharmD, BCPS Clinical Pharmacy Specialist, Internal Medicine University of Chicago Medicine

Questions