Bridging the Gap from Vancomycin Trough to AUC Monitoring

Jena Foreman, PharmD, BCPS, BCIDP, Clinical Pharmacy Specialist, HSHS St. Elizabeth's Hospital, O'Fallon, Illinois Josh Schmees, PharmD, System Pharmacy Informaticist HSHS St. Elizabeth's Hospital, O'Fallon, Illinois Natalie Tucker, PharmD, BCPS, BCIDP, Clinical Pharmacy Specialist, HSHS St. John's Hospital, Springfield, Illinois

Images from subscription unless otherwise indicated

Conflicts of Interest

• Neither the speakers nor the planning staff have any relevant conflicts of interest to disclose.

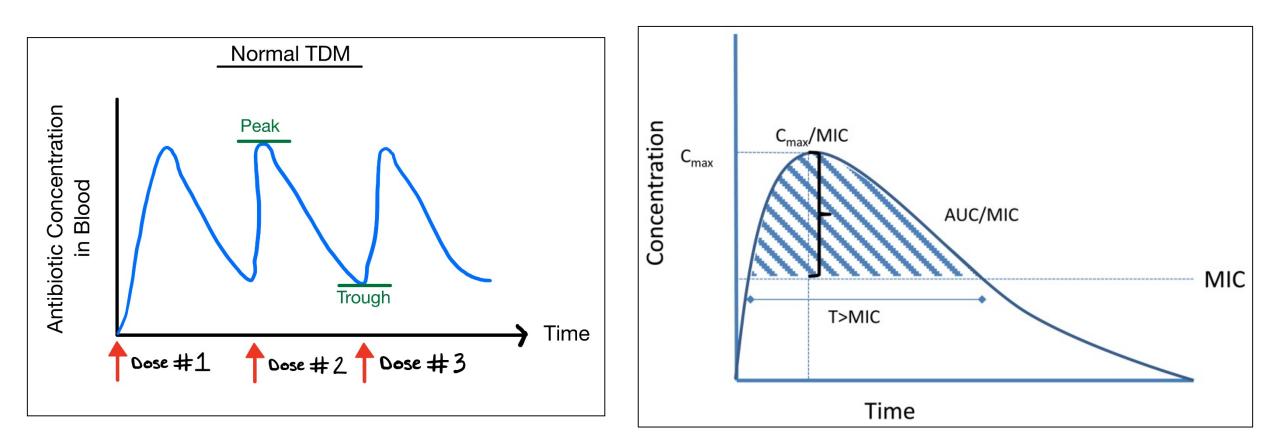
Learning Objectives

- 1. Assess the benefit of precision dosing software as a best practice for vancomycin AUC monitoring.
- 2. Design a plan to implement precision dosing software in a healthcare system.
- 3. Predict the challenges of implementing precision dosing software for a variety of hospital types, including those with limited resources.

Hospital Sisters Health System (HSHS)

- HSHS hospitals are located in Illinois (9) and Wisconsin (6)
- Franciscan Catholic Healthcare Ministry
- Mix of critical access, community teaching, and tertiary care hospitals
- System antimicrobial stewardship and pharmacy & therapeutics committees
- 13 of the 15 hospitals on the same EMR platform and clinical decision support

Benefits of AUC-Based Vancomycin Monitoring

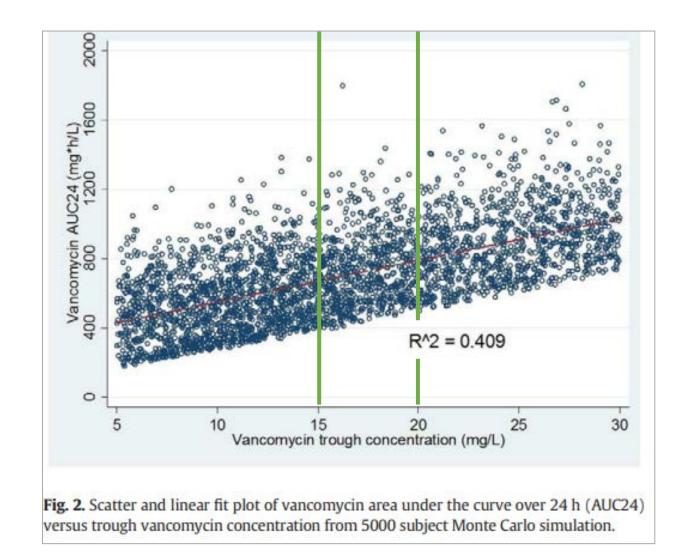


Why Implement Vancomycin AUC Monitoring?

• AUC monitoring by a pharmacist provides safer and more effective vancomycin therapy for patients, while decreasing vancomycin and lab utilization for a cost-benefit to healthcare facilities.

Trough vs. AUC

Clinical Background


What are the clinical benefits of transitioning from trough to AUC?

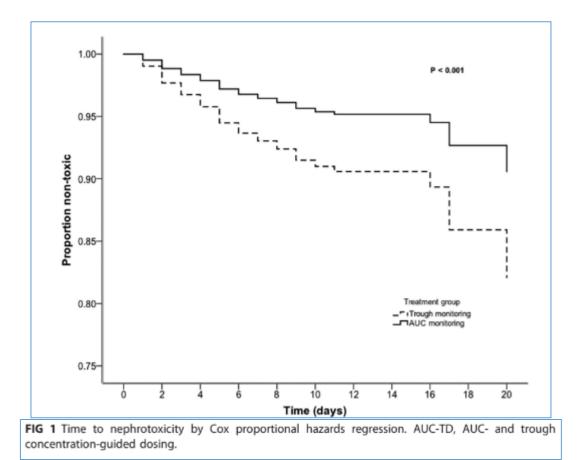
Efficacy Data

- In a simulation of 5000 patients on vancomycin 1g q8h, trough was poorly correlated with AUC
- High inter-patient variability with correlating trough to AUC

Efficacy Data

- Meta-analysis looking at association between vancomycin trough level and treatment outcomes
- Treatment failure = mortality or persistent bacteremia
- No difference in vancomycin treatment failure with high (≥ 15 mg/L) vs. low trough

High troug		ugh	Low trough			Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% CI
1.4.1 Trough thresho	ld of 15 m	g/L					
Arshad et al (14)	9	49	7	55	7.2%	1.54 [0.53, 4.51]	
Clemens et al (16)	18	68	5	26	6.9%	1.51 [0.50, 4.61]	
Ghosh et al (18)	23	80	21	47	10.7%	0.50 [0.24, 1.06]	
Jung et al (22)	6	16	14	60	6.4%	1.97 [0.61, 6.39]	
Kullar et al (8)	65	148	98	160	15.1%	0.50 [0.31, 0.78]	
Lodise et al (23)	34	111	6	12	6.2%	0.44 [0.13, 1.47]	
odise et al (23)	28	93	12	30	9.4%	0.65 [0.27, 1.52]	
Subtotal (95% CI)		565		390	61.9%	0.75 [0.49, 1.16]	◆
Total events	183		163				
Heterogeneity: Tau ² =	0.14; Chi ²	= 10.35	, df = 6 (P	9 = 0.11); I ² = 42%		
Test for overall effect:	Z = 1.29 (F	P = 0.20)				
.4.2 MIC-based thre	shold						
odise et al (23)	12	28	28	95	9.2%	1.79 [0.75, 4.28]	
odise et al (23)	11	41	29	82	9.7%	0.67 [0.29, 1.53]	
odise et al (23)	13	30	27	93	9.5%	1.87 [0.80, 4.37]	
odise et al (23)	27	91	13	32	9.6%	0.62 [0.27, 1.42]	
Subtotal (95% CI)		190		302	38.1%	1.08 [0.59, 1.95]	•
Fotal events	63		97				
Heterogeneity: Tau ² =	0.18; Chi ²	= 5.92,	df = 3 (P =	= 0.12);	² = 49%		
Test for overall effect:	Z = 0.24 (F	P = 0.81)				
		755		692	100.0%	0.87 [0.60, 1.25]	•
Total (95% CI)							
Total (95% CI) Total events	246		260				
,		= 19.56		P = 0.0	3); l² = 499	%	0.01 0.1 1 10 100


Efficacy Data

- Meta-analysis looking at association between vancomycin trough level and treatment outcomes
- Association between <u>AUC:MIC</u> and vancomycin treatment failure
- High AUC (≥ 400) associated with reduction in treatment failure

	High AU	C/MIC	Low AU	C/MIC		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	M-H, Random, 95% Cl
2.8.2 AUC:MIC thres	hold 300 – 3	399 h					
Ghosh et al (18)	18	77	27	50	11.9%	0.26 [0.12, 0.56]	
Jung et al (22)	11	54	9	22	6.0%	0.37 [0.13, 1.09]	
Lodise et al (23)	17	73	23	50	11.6%	0.36 [0.16, 0.78]	
Lodise et al (23) Subtotal (95% CI)	21	85 289	19	38 160	10.8% 40.4%	0.33 [0.15, 0.73] 0.32 [0.21, 0.48]	•
Total events	67		78				
Heterogeneity: Tau ² =	0.00; Chi ² =	0.43, d	f = 3 (P = 0	0.93); l²	= 0%		
Test for overall effect:	Z = 5.37 (P	< 0.000	01)				
2.8.3 AUC:MIC thres	hold 400 – 4	499 h					
Jung et al (22)	10	52	10	24	6.2%	0.33 [0.11, 0.97]	
Kullar et al (8)	107	221	61	99	30.0%	0.58 [0.36, 0.95]	
Subtotal (95% CI)		273		123	36.2%	0.53 [0.34, 0.82]	•
Total events	117		71				
Heterogeneity: Tau ² =				0.35); l²	= 0%		
Test for overall effect:	Z = 2.82 (P	= 0.005)				
2.8.4 AUC:MIC thres	hold 500 – (650 h					
Lodise et al (23)	16	67	24	56	11.8%	0.42 [0.19, 0.90]	
Lodise et al (23)	15	65	25	58	11.6%	0.40 [0.18, 0.86]	
Subtotal (95% CI)		132		114	23.4%	0.41 [0.24, 0.70]	•
Total events	31		49				
Heterogeneity: Tau ² =				0.92); I ²	= 0%		
Test for overall effect:	Z = 3.22 (P	= 0.001)				
Total (95% CI)		694		397	100.0%	0.41 [0.31, 0.53]	•
Total events	215		198				
Heterogeneity: Tau ² =	0.00; Chi ² =	4.04, d	f = 7 (P = 0	0.78); l ²	= 0%		0.01 0.1 1 10
Test for overall effect:	Z = 6.67 (P	< 0.000	01)				Favors high AUC:MIC Favors low AUC:N

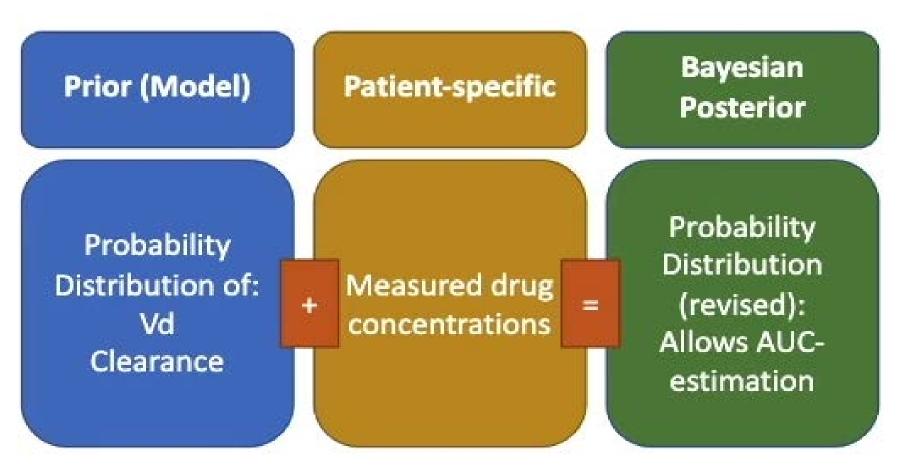
Nephrotoxicity Data

- Quasi-experimental study of 1280 patients
- AUC monitoring demonstrated reduction in nephrotoxicity as well as decreased time to nephrotoxicity

Nephrotoxicity Data

 Multivariable logistic regression found AUC monitoring associated with ~ 50% reduction in nephrotoxicity

Variable	Unadjusted OR	95% CI for unadjusted OR	Adjusted OR	95% CI for adjusted OR	P value
AUC monitoring	0.724	0.488-1.074	0.514	0.332-0.794	0.003
Concornitant furosernide	3.220	2.136-4.873	1.771	1.127-2.784	0.013
Elixhauser comorbidity index	1.274	1.186-1.368	1.149	1.060-1.245	0.001
Duration of therapy	1.124	1.074-1.175	1.093	1.044-1.145	< 0.001
APACHE II score	1.084	1.061-1.106	1.070	1.045-1.097	< 0.001
Concomitant i.v. contrast dye	2.406	1.538-3.765			
Concomitant tobramycin	1.195	0.880-4.165			



How Do I Calculate AUC?

- Two methods for calculating AUC
 - Two-sample AUC calculations by hand or using spreadsheet
 - Pros: Inexpensive technology, quick setup and implementation
 - Cons: More lab draws, levels must be at steady-state, more room for human error, time-consuming
 - One-sample AUC calculations using Bayesian software
 - Pros: Fewer lab draws, less room for human error, more efficient
 - Cons: Increased costs for technology, longer setup and implementation, downtime

Bayesian Method

- Lee BV, et al. published a detailed cost analysis comparing 3 groups: trough-only, non-Bayesian AUC monitoring, and Bayesian AUC monitoring
- Trough group Standard of care set by 2009 IDSA guidelines
- Non-Bayesian: Two-sample AUC monitoring using spreadsheet
- Bayesian: One-sample monitoring using precision dosing software
- Drug levels completed within first 48 hours of treatment
- Outcomes monitored from 48 hours to end of therapy

Specific costs that were included:

- Vancomycin drug concentrations
- Bayesian software costs
- Hospitalizations for Acute Kidney Injury (AKI)

Dosing Method	Trough (US \$)	Two-sample AUC (US \$)	Bayesian AUC (US \$)
Additional AKI treatment cost per patient	2,982	2,136	917
Incremental Cost Benefit per Patient vs Trough	-	846	2065
Incremental Cost Benefit for 1000 Vancomycin Patients/Year vs Trough	_	846,810	2,065,720

Other potential cost and time savings:

- Decreased drug costs
- Decreased nursing and laboratory time for lab draws
- Increased pharmacist productivity due to time efficiency

Crunch the Numbers!

- Cost avoidance:
- 2,065,720 dollars/year per 1000 vancomycin patients
 - = \$2,065.72 saved per patient!

Break-even analysis for Bayesian Precision Dosing Software

- Cost of Software:
- \$100,000 annual cost/\$2,065.72 cost avoidance per patient

= 41 vancomycin patients per year

Implementation

"You do not rise to the level of your goals. You fall to the level of your systems."

ou fail to the level of your systems.

- James Clear, "Atomic Habits"

Make a Detailed To-Do List

How do I get started?

1. Find your experts and build your team

Infectious Diseases Pharmacist

Infectious Diseases Physician

Director of Pharmacy / Pharmacy Manager

Pharmacy Informatics

Financial Analyst

Hospital Leadership

Hospital / System Committees

Antimicrobial Stewardship

Pharmacy & Therapeutics

Fiscal Stewardship

Informatics

Leadership Buy-In

- 1. Present clinical data and break-even analysis for your specific institution or institutions.
- 2. Assess whether implementation makes sense on a local or system level.
- 3. Decide which Bayesian precision dosing software platform is the best fit.
 - Turner RB. Pharmacotherapy. 2018;38(12):1174-1183.

Build Your Systems

- Calculation decisions
- Bayesian Software Data Validation
- Vancomycin Monitoring Protocol
- Work-aids
- Educational Materials
 - Pharmacists
 - Nurses
 - Physicians/Mid-level providers

Education & Training

Pharmacists

- Clinical Education continuing education programs, IDSA guidelines
- Software Training live classes, videos, practice
- Proof of Competency CE certificates, competencies, patient case studies
- Question/Answer sessions

Education & Training

Physicians, Mid-level Providers, Nurses

- Memos
- Committee meetings
- Department huddles
- Email
- Onboarding

After Go-Live

- Troubleshooting
- Evaluation revise protocol, patient case studies, communication of common errors

Excellent Implementation Resources

- <u>https://mad-id.org/vancomycin/</u>
- <u>https://www.sidp.org/Vancomycin-AUC-Implementation-Toolkit-Guide</u>
- https://www.proce.com/activities/activity_detail?id=869
- Heil EL, Claeys KC, Mynatt RP, et al. Making the change to area under the curve-based vancomycin dosing. *Am J Health-Syst Pharm*. 2018;75:1986-1995.

Workflow Considerations

Workflow Overview

- Pick your patient
- Pick your medication
- Review data
- Perform analysis
- Copy decision into progress note

Launch Tool

Alert Time	Alert				
08/09/2021 02:31	Targeted Drug: Vancomycin > 72 hrs. 🚺	- Admit Diagr	Admit Diagnosis: heart rate greater than 90		
Dismiss Suppress	Patient appears to have received vancomycin for > 72 hrs. A recent vancomycin order was found that started or ended within 72 hours of th		Demographics & renal function er or a series of single orders that ma		
Intervention	Recent Order:				
Launch InsightRX	Drug	Dose	Start		
	VANCOMYCIN HCL IN NACL 1.25-0.9 GM/250ML-% IV SOLN	1 BG INTRAVENOUS ONCE	08/06/2021 02:00		
**					
td_alert_id: 88767790 (rev: 0)	Prior Order:				
	Drug	Dose	Start		
	VANCOMYCIN HCL IN NACL 1-0.9 GM/250ML-% IV SOLN	1 BG INTRAVENOUS BID	08/06/2021 09:00		

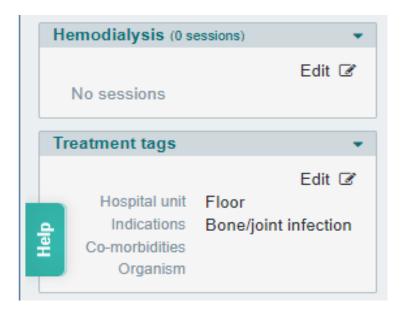
Select Drug

() Josh S
InsightRX © 2021
✓

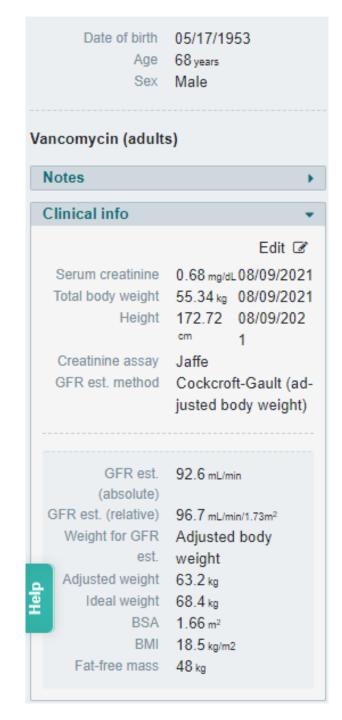
Data Extraction

info:

Importing patient data and generating regimen options ...


...

- Extracting data from EMR
- Updating regimen options
- Generating plots



Review Pertinent Data

- Interfaced lab data and calculations
- Non-interfaced data (e.g. hemodialysis)

Historical Timing

- Past doses, levels, labs
- Calculated interval, infusion length

Patie	nt monitori	ng						Hide covariates	Edit patient	Edit doses/markers
		Dose	Interval	Start time 🔺	Inf. length	Marker	Since dose	Comments		
q	1	1250 mg		08/06/2021 01:46	1.5 hours					Q
R				08/06/2021 02:15		SCr: 0.83 mg/dL				
R	2	1000 mg	7h 11m	08/06/2021 08:57	1 hours					Q
R	3	1000 mg	12 h 22 m	08/06/2021 21:19	1 hours					Q
R	4	1000 mg	11 h 25 m	08/07/2021 08:44	1 hours					Q
R	5	1000 mg	13 h 29 m	08/07/2021 22:13	1 hours					Q
q				08/08/2021 06:57		TDM: 16.1 MCG/ML	8 h 44 m			Q
R	6	1000 mg	12 h 39 m	08/08/2021 10:52	1 hours					Q
R	7	1000 mg	10 h 45 m	08/08/2021 21:37	1 hours					Q
R	8	1000 mg	10 h 51 m	08/09/2021 08:28	1 hours					Q
R				08/09/2021 10:21		SCT: 0.68 mg/dL				

Timing Interactions

- Flag or remove data inaccuracies
- Tag comments to data
- Edit to add missing troughs or doses
 - How do you handle an outage with an integrated solution?

							-		-	
Patient monitoring								Hide covariates	Edit patient	Edit doses/markers
		Dose	Interval	Start time 🔺	Inf. length	Marker	Since dose	Comments		
디	1	1250 mg		08/06/2021 01:46	1.5 hours					Q
디				08/06/2021 02:15		SCr: 0.83	3 mg/dL			
)ee	2	1000 mg	7 . 11 .	08/06/2021 08:57	1-hours	1				Q
ы	3	1000 ma	19h 33m	08/06/2021 21:19	1 hours	2				9

Dose Analysis

• Review guidance on different dosing regimens

Custom dose 🚱								
Δ	Dose	Interval	Inf. length	AUC _{24,ss}	C _{trough,ss}	P _{AUC} *	P _{conc} *	Tox.
	mg 🗸	12 V hours	1 hours					
Reference table								
Δ	Dose	Interval	Inf. length	AUC _{24,ss}	C _{trough,ss}	P _{AUC} *	P _{conc} *	Tox.
Previous	1000 mg (18.1 mg/kg)	12 hours	1 hours	468 mg/L.hr	10.8 mg/L	82 %	2 %	6%
DoseAssist	1250 mg (22.6 mg/kg)	12 hours	1.5 hours	582 mg/L.hr	13.6 mg/L	98 %	9%	9%
DoseAssist	750 mg (13.6 mg/kg)	8 hours	1 hours	524 mg/L.hr	14.7 mg/L	94 %	10 %	10 %
DoseAssist	500 mg (9 mg/kg)	6 hours	1 hours	467 mg/L.hr	14.6 mg/L	81 %	7%	10 %
Summary	* P _{auc} : probability that AUC is >400 (effica	cy); P _{conc} : probability that	t C _{trough} is above 20 µg/mL (t	toxicity); Tox: Proba	bility of nephrotoxi	city, based on	Lodise et al. (Clin Infect Dis 2009.
# doses 8	starting at dose # later 🗸	at 08/09/2021	17:54					
DING BRIDGES	2021 ICHP ANNUAL MEETING							

Select New Dose

• Alter dosing to see the impact over time

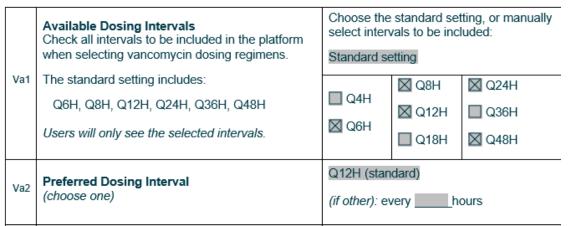
Δ	Dose	Interval	Inf. length	AUC _{24,ss}	C _{trough,ss}	P _{AUC} *	P _{conc} *	Tox.
Previous	1000 mg (18.1 mg/kg)	12 hours	1 hours	468 mg/L.hr	10.8 mg/L	82 %	2 %	Timing
DoseAssist	1250 mg (22.6 mg/kg)	12 hours	1.5 hours	582 mg/L.hr	13.6 mg/L	98 %	9%	9%
DoseAssist	750 mg (13.6 mg/kg)	8 hours	1 hours	524 mg/L.hr	14.7 mg/L	94 %	10%	10%
DoseAssist	500 mg (9 mg/kg)	6 hours	1 hours	467 mg/L.hr	14.6 mg/L	81 %	7 %	10 %

2009.

Model Analysis

- Visual changes overtime
 - Based on the closest selected model

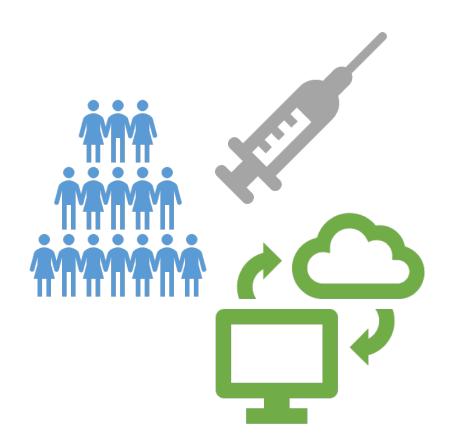
Documentation


• Adjust and copy calculations into your progress note

v	Summary note	×
ur rs	Loading dose: N/A Regimen: 750 mg every 8 hours for 12 doses. Start time: 17:54 on 08/09/2021 Exposure target: AUC24 (range)400-600 mg/L.hr AUC24,ss: 524 mg/L.hr	
ïtj	PAUC*: 94 % Ctrough,ss: 14.7 mg/L Pconc*: 10 %	•
12	Close Save to notes Copy to clipboard	

Technical Considerations

- HIPAA
 - Contains patient data so platform needs to secure
- Relies on medication administration interface for key data
 - HL7 vs Flatfile setup
 - How often is data exchanged (real-time vs daily)
- Understand settings that impact recommendations made
 - E.g. dose rounding



Vancomycin regimen settings

- COVID-19-related
 - Furloughs
 - Increased patient census
 - Vaccine rollout
- Hospital resource-related
 - EMR continuity
 - After-hours coverage
 - Data validation for software
 - Limited clinical staff

- Education-related
 - Pharmacists with different levels of training and experience
 - Pharmacy to dose vancomycin in ALL patients
 - Hospitals with and without ID services

- Informatics-related
 - Use integrated data when possible
 - Adjusted infusion length to come from interfaced order
 - Using calculated interval vs ordered interval
 - Ensure outage training for rare interface downtimes
 - Have system pharmacy operational leads engaged in build and training design

Outcomes Evaluation In Progress

AKI Rates	
Drug Concentrations	
Drug Utilization	
Mortality	
Length of Stay	
Process Feedback	

Case Study

Happy Days Hospital is a 35-bed critical access hospital which is part of a 12-hospital health-system. They have no clinical pharmacist or infectious diseases experts, but they do have a system antimicrobial stewardship committee. They have an integrated EMR/clinical decision support since they are part of the health-system. The inpatient pharmacy is open daily from 0700 – 1900 with after hours coverage by a sister hospital.

What are the barriers for implementing vancomycin AUC monitoring with Bayesian software?

Summary

- Implementation of AUC monitoring is possible...even during a pandemic
- Create an implementation plan
- Buy-in from leadership, stewardship, and informatics teams is required
- Bayesian software is a crucial tool for AUC monitoring
- Completing a break-even analysis, securing buy-in, and thorough staff training and education are critical steps for success

Self Assessment #1 Before proposing the purchase of Bayesian software to hospital leadership, what is the best way to prepare?

- A. Develop educational material for pharmacy staff
- B. Conduct a break-even analysis
- C. Draft AUC monitoring guidelines
- D. Pray or Meditate

Self Assessment #2 Which step is necessary after implementation of Bayesian software and vancomycin AUC monitoring?

- A. Nursing education
- B. Pharmacist education
- C. Process evaluation
- D. Software data validation

Self Assessment #3. Which of the following is a common limitation to implementing vancomycin AUC monitoring in small, independent, rural hospitals?

- A. Lack of buy-in from hospital leadership
- B. Lack of internet access
- C. Presence of rodents in the hospital
- D. Lack of infectious disease expertise

Self Assessment #4 The most efficient vancomycin dosing software setup will:

- A. Avoid using population modeling
- B. Use data daily
- C. Integrate patient data directly from the electronic health record
- D. Exclude patient data for security reasons

Questions

