Examining the Necessity of Newer Insulins for In-Hospital Diabetes Management

Presented in partnership with the ICHP Annual Meeting

Faculty

Susan Cornell, PharmD, CDE, FAPhA, FAADE
Associate Professor of Pharmacy Practice
Associate Director of Experiential Education
Midwestern University Chicago College of Pharmacy
Medication Therapy Management/Diabetes Care Provider
Bolingbrook Christian Health Clinic & Assess Community Health Clinic
Downers Grove, Illinois

Disclosures

• Susan Cornell, PharmD, CDE, FAPhA, FAADE: Speakers’ Bureau—Sanofi

Learning Objectives

• Describe the reasons for use of concentrated insulin formulations in the treatment of diabetes
• Discuss the clinical, pharmacokinetic, and pharmacodynamic profiles for current and emerging basal insulins
• Describe the pharmacist’s role in counseling patients from inpatient to outpatient settings to minimize the risk of insulin administration errors and hospital readmissions

Technician Learning Objectives

• Describe the reasons for use of concentrated insulin formulations in the treatment of diabetes
• List the available formulations of newer insulins
• Explain how to use an insulin pen

Concentrated Insulin:

The Diabesity Epidemic
Type 2 Diabetes with Severe Insulin Resistance
Due to Obesity and Physical Inactivity

Obesity
Diagnosed with Diabetes
Physically Inactive

<table>
<thead>
<tr>
<th>Age-adjusted Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 19.4</td>
<td>0 - 20.5</td>
</tr>
<tr>
<td>19.5 - 23.8</td>
<td>20.6 - 24.6</td>
</tr>
<tr>
<td>23.9 - 27.8</td>
<td>24.7 - 28.2</td>
</tr>
<tr>
<td>27.1 - 30.8</td>
<td>28.3 - 32.7</td>
</tr>
<tr>
<td>> 30.8</td>
<td>32.8 - 36.9</td>
</tr>
</tbody>
</table>

Obesity
Age-adjusted Percent
0 - 20.0
20.1 - 24.4
24.5 - 28.2
28.3 - 32.7
> 32.8

Physically Inactive
Percent
0 - 20.0
20.1 - 24.4
24.5 - 28.2
28.3 - 32.7
> 32.8

Diagnosed with Diabetes
Age-adjusted Percent
0 - 6.3
6.4 - 7.5
7.6 - 8.8
8.9 - 10.5
> 10.6

Insulin Resistance
• Major defect in individuals with type 2 diabetes
• Reduced biological response to insulin
• Closely associated with obesity
• Associated with cardiovascular risk
• Type 1 diabetes patients can be insulin resistant as well

Glucose-Lowering Comparison

<table>
<thead>
<tr>
<th>Monotherapy</th>
<th>Route of Administration</th>
<th>Target Insulin Resistance</th>
<th>Target Glucose (FPG or PPG)</th>
<th>A1C Reduction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfonureas</td>
<td>Oral</td>
<td>No</td>
<td>Both</td>
<td>1.5 - 2.0</td>
</tr>
<tr>
<td>Metformin</td>
<td>Oral</td>
<td>Yes</td>
<td>FPG</td>
<td>1.5</td>
</tr>
<tr>
<td>Glitazones</td>
<td>Oral</td>
<td>Yes</td>
<td>Both</td>
<td>0.5 - 1.0</td>
</tr>
<tr>
<td>Meglitinidases</td>
<td>Oral</td>
<td>No</td>
<td>PPG</td>
<td>0.5 - 1.0</td>
</tr>
<tr>
<td>AGIs</td>
<td>Oral</td>
<td>No</td>
<td>PPG</td>
<td>0.5 - 1.0</td>
</tr>
<tr>
<td>DPP-4 inhibitors</td>
<td>Oral</td>
<td>No</td>
<td>PPG</td>
<td>0.5 - 0.7</td>
</tr>
<tr>
<td>SGLT-2 inhibitors</td>
<td>Oral</td>
<td>No</td>
<td>PPG</td>
<td>0.4</td>
</tr>
<tr>
<td>GLP-1 agonists</td>
<td>Injectable</td>
<td>No</td>
<td>Steady-state – PPG</td>
<td>0.8 - 1.5</td>
</tr>
<tr>
<td>Amylin analogs</td>
<td>Injectable</td>
<td>Yes (to a degree)</td>
<td>Basal – FPG</td>
<td>0.6</td>
</tr>
<tr>
<td>Insulin</td>
<td>Injectable</td>
<td>Yes (to a degree)</td>
<td>Basal – FPG</td>
<td>as much as needed</td>
</tr>
</tbody>
</table>

Insulin Therapy for Insulin Resistance
• Insulin, insulin, and yet more insulin!
 - Causes weight gain and fluid retention
 - Increased risk of hypoglycemia
 - Expensive at high volumes (especially the pens)
 - Multiple injections per day often needed
 - Pumps not practical with high-volume insulin usage

Pharmacokinetic Profile of Currently Available Insulins

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>NPH (Neutral protamine Hagedorn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Insulin levels rise quickly</td>
</tr>
<tr>
<td>10</td>
<td>Insulin levels peak</td>
</tr>
<tr>
<td>24</td>
<td>Insulin levels decline</td>
</tr>
</tbody>
</table>

NPH = neutral protamine Hagedorn.

The Basal-Bolus Concept
• Basal insulin: 50% of daily needs
 - Controls nighttime and between-meal glucose at a nearly constant level
• Bolus insulin: 50% of daily needs
 - Controls mealtime glucose
 - 10% to 20% of total daily insulin requirement at each meal
 - Correction dose (sensitivity factor)
 - Correct hyperglycemia reactively
Concentrated Insulin: The Pharmacokinetic, Pharmacodynamic, and Clinical Properties of Concentrated Insulin Products

U-100 Insulin vs U-500 Insulin

- Human Regular U-500 is highly concentrated and contains 5 times as much insulin in 1 mL as standard U-100 insulin
 - Truly used for patients on high doses of insulin (usually >200 units daily)
- Both have onset of action at 30 minutes
 - U-500 insulin exhibits a delayed and lower peak effect relative to U-100
 - U-500 insulin typically has a longer duration of action compared with U-100 (up to 24 hours following a single dose)
- Clinical experience has shown that U-500 insulin frequently has time-action characteristics reflecting both prandial and basal activity

PK and PD profiles for U-500 vs U-100 Human Insulin

IRI = immunoreactive insulin; PK = pharmacokinetic; PD = pharmacodynamic.

Human Regular U-500 Pen

- Can deliver up to 300 units in a single injection
 - No dose conversion for pen
 - Vials/syringes will need dose conversion
 - Dials in 5-unit increments
 - Holds 1500 units of insulin in every pen
- For severely insulin-resistant patients
 - When daily insulin requirements are in excess of 200 units/day

High-Concentration Glargine (U-300)

- Available only in a pen
 - U-300: 450 units/pen, max 80 units/injection
 - Can be used for patients on small and large volumes of insulin
 - Offers a smaller depot surface area, leading to a reduced rate of absorption
 - Provides flatter and prolonged PK and PD profiles and more consistency
 - Half-life is ~23 hours
 - Steady state in 4 days
 - Duration of action ≤36 hours

PK and PD of U-300 Insulin Glargine vs U-100 Insulin Glargine

U-300 glargine displays a more even and prolonged PK/PD profile compared with U-100 glargine, offering blood glucose control beyond 24 hours

LLOQ = lower limit of quantification; GIR = glucose infusion rate.
U-100 and U-200 Insulin Degludec

- Available only in a pen
 - U-200: 600 units/pen, max 160 units/injection
 - U-100: 300 units/pen, max 80 units/injection
- Can be used for patients on small and larger volumes of insulin
- Provides flatter and prolonged PK and PD profiles and more consistency
 - Duration of action >42 hours
 - Half-life ~25 hours
 - Detectable for at least 5 days
 - Steady state in 3 to 4 days

- Detectable for at least 5 days
- Steady state in 3 to 4 days

Basal Insulin Degludec

- Flat, stable profile of both 100 unit/mL and 200 unit/mL formulations

- Mean 24-Hour GIR Profile of the Two Insulin Degludec Formulations at Steady State

GIR = glucose infusion rate.

Importance of Patient Education

- Avoid using insulin as a “threat,” but as a solution; discuss it as an option early
- Use insulin pens and regimens that offer maximum flexibility
- Give a “limited” trial of insulin
- Tell patient that injection is less painful than a finger stick; give an injection in the office/hospital/pharmacy
- Teach patient to recognize and treat hypoglycemia
 - Use basal analog insulin to minimize hypoglycemia

Overcoming Barriers to Insulin Therapy

- Avoid using insulin as a “threat,” but as a solution; discuss it as an option early
- Use insulin pens and regimens that offer maximum flexibility
- Give a “limited” trial of insulin
- Tell patient that injection is less painful than a finger stick; give an injection in the office/hospital/pharmacy
- Teach patient to recognize and treat hypoglycemia
 - Use basal analog insulin to minimize hypoglycemia

What Patients Need to Know about Insulin AND Delivery Devices

- Storage and expiration
 - When it should be refrigerated
 - When it can be at room temperature
 - Time medication expires after first use
- How to prepare product for first use
- How to properly use the device
- How to dispose of the device

- Compare at home vs hospital (formulary) insulin
- Syringes or pen needles
- Blood glucose meter and strips
- Lancets and lancing device
- Glucagon emergency kit
- Contact information of diabetes care provider(s)
Product Expiration

<table>
<thead>
<tr>
<th>Products/Device</th>
<th>Refrigerated</th>
<th>Unrefrigerated</th>
<th>Once used (opened)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin lispro U-100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin aspart</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin glulisine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin glargine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin human N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin human R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pens</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin lispro U-100, U-200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin aspart</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin glulisine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin glargine U-100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin glargine U-300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vials & pens: Insulin detemir</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pens: Insulin degludec U-100, U-200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhaled: Insulin human</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Expiration dates:
- **Vials**: 28 days
- **Pens**: 28 days
- **Glargine U-300**: 42 days
- **Lispro, glargine, glulisine**: 28 days
- **Aspart**: 14 days
- **Vials & pens**: 42 days
- **Insulin degludec U-100, U-200**: 56 days

Do not refrigerate:
- Lispro, glargine, glulisine: 28 days
- Aspart: 14 days

Usable for:
- **Insulin detemir**: 42 days
- **Insulin degludec U-100, U-200**: 56 days

Basal Insulin Delivery Options

<table>
<thead>
<tr>
<th>Insulin</th>
<th>Concentration</th>
<th>Vial</th>
<th>Pen</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPH</td>
<td>U-100</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Glargine</td>
<td>U-100</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Glargine</td>
<td>U-300</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Detemir</td>
<td>U-100</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Degludec</td>
<td>U-100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regular Human</td>
<td>U-500</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

First-Time Preparation

- **Check the pen**
 - Make sure liquid is clear, colorless, and particle-free
 - (N insulin and mixed insulin will be cloudy)
 - Wipe the rubber stopper with alcohol
- **Attach the needle**
- **Prime the needle**
 - Dial 2 to 3 units; hold up, depress the button
 - Repeat process until a drop of insulin appears at tip of the needle
- **Dial up the dose**
- **Inject straight into the skin**
 - Depress button to release insulin into subcutaneous tissue
 - Hold for 5 to 10 seconds before removing needle from skin
 - Remove needle and dispose into sharps container

Concentrated Basal Insulin Dosing Conversion Comparison

<table>
<thead>
<tr>
<th>Glargine U-300</th>
<th>Degludec U-200</th>
<th>Human R U-500</th>
</tr>
</thead>
<tbody>
<tr>
<td>True basal insulin</td>
<td>True basal insulin</td>
<td>Pseudo-basal insulin</td>
</tr>
<tr>
<td>1 daily injection</td>
<td>1 daily injection</td>
<td>1 to 1 multiple daily injections of basal-bolus</td>
</tr>
<tr>
<td>80% of total daily basal dose</td>
<td>80% of total daily basal dose</td>
<td>Total daily dose divided into 2 or 3</td>
</tr>
<tr>
<td>Maximum single-dose injection: 80 units</td>
<td>Maximum single-dose injection: 180 units</td>
<td>Maximum single-dose injection: 300 units</td>
</tr>
<tr>
<td>Dialed in 1-unit increments</td>
<td>Dialed in 2-unit increments</td>
<td>Dialed in 5-unit increments</td>
</tr>
<tr>
<td>450 units of insulin per pen</td>
<td>600 units of insulin per pen</td>
<td>1500 units of insulin per pen</td>
</tr>
</tbody>
</table>

- **Expect higher daily dose of Glargine U-300 to maintain glycemic control**
- **Monitor for hypoglycemia**

Clinical Pearls

- **Watch for over basalization**
 - High basal dose with no or little bolus insulin
 - Continually increasing insulin doses does not reduce insulin resistance
 - Humulin R U-500 is useful for patients on very high total daily insulin doses (eg, >200 TDD/day)
 - Ultra long-acting basal insulins (Glargine U-300 and Degludec U-200) provide longer duration of action for better basal coverage with low nocturnal hypoglycemia

Take Aways

- **Insulin resistance is a MAJOR problem**
 - Some concentrated insulin may help people on large doses of insulin
 - However, need to use combination drug therapy to improve insulin sensitivity
 - **Novel, long-acting basal insulin analogs in development may provide benefit compared with current agents**
 - Flatter time-action profiles with less variability
 - Less hypoglycemia, particularly nocturnal hypoglycemia
 - **Patients need to know how to properly use insulin devices**
 - Hospital pharmacists should review technique at discharge
 - Community pharmacists should review technique at initial fill and periodically thereafter
Questions?