Chronic Myelogenous Leukemia: Considerations for Selecting and Managing Therapy

A knowledge-based CPE activity presented during the ICHP 2010 Annual Meeting

Friday, August 27, 2010
Drury Lane Theater and Conference Center
Oakbrook Terrace, IL
8:00 am – 9:00 am

Planned and conducted by ASHP Advantage.
Supported by an educational grant from Novartis Oncology.
Chronic Myelogenous Leukemia: Considerations for Selecting and Managing Therapy

ACTIVITY FACULTY

Joseph S. Bubalo, Pharm.D., BCPS, BCOP
Oncology Clinical Pharmacy Specialist
Assistant Professor of Medicine, Division of Hematology and Medical Oncology
Oregon Health Sciences University Hospitals & Clinics
Portland, Oregon

Joseph Bubalo, Pharm.D., BCPS, BCOP, is a board certified pharmacotherapy specialist and Assistant Professor of Medicine, Division of Hematology and Medical Oncology, Oregon Health and Science University (OHSU) in Portland, Oregon. He is also Assistant Professor of Pharmacy, courtesy faculty at Oregon State University School of Pharmacy. Dr. Bubalo is board certified in pharmacotherapy and oncology pharmacy. He is the Clinical Operations Manager at OHSU and is active in patient care and research.

Dr. Bubalo has received multiple research grants including funding for multiple studies investigating ways to improve the control of nausea and vomiting in various patient populations, as well as other topics in supportive care and infectious disease. He continues to look for alternate ways to decrease the adverse symptoms associated with cancer, antineoplastic, and surgical therapies. He has lectured and published on drug treatments and effects in cancer and stem cell transplant patients, and on drug therapy in the management of pain and nausea.
Chronic Myelogenous Leukemia: Considerations for Selecting and Managing Therapy

DISCLOSURE STATEMENTS

In accordance with the Accreditation Council for Continuing Medical Education’s Standards for Commercial Support and the Accreditation Council for Pharmacy Education’s Guidelines for Standards for Commercial Support, ASHP Advantage requires that all individuals involved in the development of activity content disclose their relevant financial relationships. A person has a relevant financial relationship if the individual or his or her spouse/partner has a financial relationship (e.g., employee, consultant, research grant recipient, speakers bureau, or stockholder) in any amount occurring in the last 12 months with a commercial interest whose products or services may be discussed in the activity content over which the individual has control. The existence of these relationships is provided for the information of participants and should not be assumed to have an adverse impact on presentations.

All faculty and planners for ASHP Advantage education activities are qualified and selected by ASHP Advantage and required to disclose any relevant financial relationships with commercial interests. ASHP Advantage identifies and resolves conflicts of interest prior to an individual’s participation in development of content for an educational activity.

The faculty and planners report the following relationships:

Joseph S. Bubalo, Pharm.D., BCPS, BCOP

Dr. Bubalo declares that he has served on the advisory board on patient adherence for Novartis.

Ron DeChant, M.S., B.S.Pharm.

Mr. DeChant declares that he has no relationships pertinent to this activity.
Chronic Myelogenous Leukemia: Considerations for Selecting and Managing Therapy

ACTIVITY OVERVIEW

Chronic myelogenous leukemia (CML) is a hematologic malignancy associated with a chromosomal mutation commonly known as the Philadelphia chromosome. CML accounts for 10-15% of all leukemia in the US, and, with dramatic progress in treatment over the past several years, most people with CML now survive at least six years after diagnosis. The average age at diagnosis is 67, and CML is rarely seen in children.

CML is divided into three phases that predict prognosis and influence treatment decisions. While the definitions for these phases can differ, they are primarily based on the number of immature white blood cells ("blasts") in peripheral blood or bone marrow: chronic phase (fewer than 10% blasts), accelerated phase (more than 10% but fewer that 20% blasts), and blast phase (also called acute phase or blast crisis, more than 20% blasts). Most patients are diagnosed in the chronic phase with mild symptoms, and treatment is very effective. As CML progresses, it does not respond as well to treatment. In the accelerated phase, the leukemia cells generally develop new chromosome changes in addition to the Philadelphia chromosome. In the blast phase, CML acts much like an acute leukemia.

Therapy is guided by multiple factors, including disease phase, mutational analysis, patient characteristics, and potential adverse effects. Imatinib mesylate is the standard for first-line therapy for patients in chronic phase. First approved by the Food and Drug Administration in 2001 as a novel, molecularly targeted, tyrosine kinase inhibitor (TKI), imatinib mesylate is a specific inhibitor of BCR-ABL. Imatinib has demonstrated favorable long-term results over six years of follow-up in clinical trials for response, overall survival, and safety when used as first-line therapy. For patients who develop resistance or intolerance to imatinib, current treatment guidelines recommend the second-generation TKIs dasatinib and nilotinib as second-line therapy for most patients. Nilotinib is 20-50 times more potent than imatinib with high affinity for BCR-ABL. Dasatinib is 300 times more potent than imatinib at BCR-ABL inhibition, and it also inhibits the SRC family tyrosine kinases. Both agents are active against a wide range of mutant clones (except T315I). Responses can be achieved with dasatinib or nilotinib after failure to two prior TKIs (imatinib/nilotinib or imatinib/dasatinib, respectively), but the responses may not be durable except in selected patients.

Preliminary results suggest that the use of second-generation TKIs for first-line therapy induce high rates of response comparable to imatinib. These results will require confirmation in Phase III clinical studies with imatinib as the control arm with study endpoints such as improved survival being evaluated. If nilotinib or dasatinib have superior efficacy results in these trials with comparable toxicity profiles, either drug could replace imatinib as standard front-line therapy. A third generation of TKIs that have activity against T315I mutant BCR-ABL tyrosine kinases are the subject of ongoing clinical trials. The potential effectiveness of different combination therapies is being investigated, as are novel aurora kinase inhibitors, omacetaxine, and HSP90 inhibitors.
Chronic Myelogenous Leukemia: Considerations for Selecting and Managing Therapy

ACTIVITY DESCRIPTION

Because of dramatic progress in treatment over the past several years, most patients with chronic myelogenous leukemia (CML) are now surviving with disease control beyond six years after diagnosis. The primary drug therapies used to treat CML are commercially available as oral formulations. Knowledge of treatment standards, monitoring methods, dose adjustment strategies, and options for managing toxicities and interactions, require pharmacists to take an active role in the management of patients with CML.

This activity will review the clinical presentation, disease progression, and molecular pathology of CML. Guidelines for the state of the art treatment and monitoring of CML will be presented based on recommendations from the National Comprehensive Cancer Network (NCCN). Drug resistance will be reviewed within the context of the expanding role of second-generation tyrosine kinase inhibitors (TKIs). Recommendations for the management and prevention of toxicities, drug-drug interactions, and drug-food interactions with TKIs will be highlighted. Patient case examples will be discussed to engage participants in the clinical decision-making process.

LEARNING OBJECTIVES

At the conclusion of this knowledge-based CPE activity, participants should be able to

- Describe the epidemiology, molecular biology, clinical presentation, and disease progression of chronic myelogenous leukemia (CML).
- Describe the currently accepted standard treatments and response monitoring parameters for CML.
- Describe the role of second-generation tyrosine kinase inhibitors (TKIs) in imatinib-resistant CML and emerging evidence related to their use.
- Identify options for preventing and managing toxicities, drug-drug interactions, and drug-food interactions related to TKIs.
- Identify areas of emerging research related to therapies for CML.

CONTINUING EDUCATION ACCREDITATION

The American Society of Health-System Pharmacists is accredited by the Accreditation Council for Pharmacy Education as a provider of continuing pharmacy education. This activity provides 1 hour (0.1 CEU) of continuing pharmacy education credit (ACPE activity #204-000-10-426-L01P).

Attendees must complete a Continuing Pharmacy Education Request online and may print their official ASHP statements of continuing pharmacy education credit at the ASHP Learning Center (http://ce.ashp.org) immediately following this activity.

Complete instructions for receiving your CPE statement of credit online are on the next page. Be sure to record the five-digit session code announced during this activity.
Chronic Myelogenous Leukemia:
Considerations for Selecting and Managing Therapy

Instructions for Processing Continuing Pharmacy Education (CPE)

To obtain your CPE statement of credit for this live activity, please visit the ASHP Learning Center at http://ce.ashp.org.

1. Select "Process Meeting CE" from bottom left. Log in to the ASHP Learning Center using your e-mail address and password.

 If you have not logged in to the new ASHP Learning Center (launched August 2008) and are not a member of ASHP, you will need to create a free account by clicking on “Become a user” and following the instructions.

2. Once logged in to the site, click on “Process Meeting CE.”

3. If this activity title does not appear in your meeting list, enter the 5-digit activity code in the box above the list and click submit. The Activity Code for this meeting is 10594. The Session Code was announced at the end of this activity. Click register again when prompted. When you receive the “thank you for registering” message, click continue. This step will bring you back to your meeting list. Click on the start link to the right of the activity title.

4. Enter the session code, which was announced during the activity, and select the number of hours equal to your participation in the activity. Pharmacists should only claim credit for the amount of time they participate in this activity.

5. Click submit to receive the attestation page.

7. Select the applicable year from the drop-down menu and locate this activity.

8. Click on Print Statement of Credit in the Status column.

Activity code: 10594

Session code:

NEED HELP? Contact ASHP Advantage at support@ashpadvantage.com.
Chronic Myelogenous Leukemia: Considerations for Selecting and Managing Therapy

Learning Objectives
At the conclusion of this knowledge-based educational activity, participants should be able to
1. Describe the epidemiology, molecular biology, clinical presentation, and disease progression of chronic myelogenous leukemia (CML).
2. Describe the currently accepted standard treatments and response monitoring parameters for CML.
3. Describe the role of second-generation tyrosine kinase inhibitors (TKIs) in imatinib-resistant CML and emerging evidence related to their use.
4. Identify options for preventing and managing toxicities, drug-drug interactions, and drug-food interactions related to TKIs.
5. Identify areas of emerging research related to therapies for CML.

Normal Hematopoiesis
From http://bric.postech.ac.kr/trend/issue/2005/images/hematopoietic_1.gif

Epidemiology of Hematologic Malignancies

Estimated new cases for 2009 in the US
- Non-Hodgkin Lymphoma – 65,980
- Multiple Myeloma – 20,580
- Chronic Lymphocytic Leukemia – 15,490
- Acute Myeloid Leukemia – 12,810
- Hodgkin Lymphoma – 8,510
- Acute Lymphocytic Leukemia – 5,760
- Chronic Myelogenous Leukemia – 5,050

CML
- **Definition**
 - A malignant clonal expansion of hematopoiesis affecting the myeloid lineage
 - The pluripotent (CD34+) stem cell is implicated as the genesis of disease
- **Epidemiology**
 - 15-20% of all leukemias in adults
 - Slight predominance of males to females (1.3:1)
 - Mean age at diagnosis = 67 years
 - Ionizing radiation is a risk factor

Chronic Myelogenous Leukemia: Considerations for Selecting and Managing Therapy

Patient Presentation

• Signs and symptoms
 – Often asymptomatic (20-50%)
 – Splenomegaly (50%)
• Laboratory findings
 – Anemia (45-60%)
 – Leukocytosis (WBC > 25,000/mm³)
 – > 100,000/mm³ → leukostasis (dyspnea, stroke, myocardial infarction)
 – Basophilia, eosinophilia
 – Thrombocytosis (platelets > 600,000/mm³)
 – Bone marrow aspirate/biopsy
 – Myeloid hyperplasia, hypercellularity
 – Increased megakaryocytes
 – Cytogenetics

CML – Disease Course

<table>
<thead>
<tr>
<th>Chronic Phase (CP)</th>
<th>Accelerated Phase (AP)</th>
<th>Blast Crisis (BC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peripheral Blood</td>
<td>Leukocytosis, Basophilia, Eosinophilia, <10% blasts</td>
<td>10-19% blasts, Platelets >1 million/mm³ or <100,000/mm³, Basophilia</td>
</tr>
<tr>
<td>Bone Marrow</td>
<td>Myeloid hyperplasia, Blasts <10%</td>
<td>Evidence of progression, New cytogenetic abnormality</td>
</tr>
<tr>
<td>Clinical Findings</td>
<td>Splenomegaly</td>
<td>Splenomegaly</td>
</tr>
</tbody>
</table>

Disease Course

<table>
<thead>
<tr>
<th>Chronic Phase</th>
<th>Accelerated Phase</th>
<th>Blast Crisis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peripheral Blood</td>
<td>Leukocytosis, Basophilia, Eosinophilia, <10% blasts</td>
<td>10-19% blasts, Platelets >1 million/mm³ or <100,000/mm³, Basophilia</td>
</tr>
<tr>
<td>Bone Marrow</td>
<td>Myeloid hyperplasia, Blasts <10%</td>
<td>Evidence of progression, New cytogenetic abnormality</td>
</tr>
<tr>
<td>Clinical Findings</td>
<td>Splenomegaly</td>
<td>Splenomegaly</td>
</tr>
</tbody>
</table>

Biology

• Myeloproliferative disorder of unregulated myeloid proliferation
 – Result: excess mature neutrophil production
• Cytogenetics
 – t(9;22) = Philadelphia chromosome
 • Promotes fusion of 2 genes, BCR-ABL
 • Protein p210BCR-ABL produces unregulated tyrosine kinase activity
 – Promotes continuous cell cycling
 – Inhibits apoptosis
 – Increases mature neutrophil proliferation

bcr-abl Gene and Fusion Protein Tyrosine Kinases

Chromosome 22: c-bcr Exons
Chromosome 9: 2-11 c-abl Introns

CML Therapy and Use of Imatinib

Melo JV. Blood. 1996; 88:2375-84.

CML Therapy

Pollutant Therapy
Curative Therapy

|------|------|------|------|------|

Chronic Myelogenous Leukemia: Considerations for Selecting and Managing Therapy

CML - Response Criteria

<table>
<thead>
<tr>
<th>Hematologic Response</th>
<th>Cytogenetic Response</th>
<th>Molecular Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete</td>
<td>Complete: 0% Ph+ cells</td>
<td>Complete: Negativity for BCR-ABL transcripts by RT-PCR</td>
</tr>
<tr>
<td>Normal peripheral blood count</td>
<td>Partial: 1%–34% Ph+ cells</td>
<td>Major: Cytogenetic remission with 3 log or greater reduction in BCR-ABL transcripts by RT-PCR</td>
</tr>
<tr>
<td>WBC <10,000/mm³</td>
<td>Major = CR+PR Minor 35%–95% Ph+ cells</td>
<td></td>
</tr>
<tr>
<td>Platelets < 450,000/mm³</td>
<td>No immature cells</td>
<td></td>
</tr>
</tbody>
</table>

CR = complete response; PR = partial response; RT-PCR = reverse transcriptase - polymerase chain reaction

CML: Overview of Historical vs Modern Perspective

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Historical Perspective (until 2000)</th>
<th>Modern Perspective (since 2000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course</td>
<td>Fatal</td>
<td>Indolent</td>
</tr>
<tr>
<td>Prognosis</td>
<td>Poor</td>
<td>Excellent</td>
</tr>
<tr>
<td>Median survival, years</td>
<td>3-6</td>
<td>≥ 25*</td>
</tr>
<tr>
<td>Frontline treatment</td>
<td>Allogeneic hematopoietic stem cell transplant (HSCT), interferon alfa</td>
<td>Imatinib</td>
</tr>
<tr>
<td>Second-line treatment</td>
<td>Not established</td>
<td>Allogeneic HSCT, novel TKIs</td>
</tr>
</tbody>
</table>

*extrapolated from imatinib Kaplan-Meier data.

CML – Treatment Goals

- Maintain chronic phase with sustained hematologic and molecular remission
- Prevent progression to accelerated/blast crisis
- Minimize toxicity of chronic-phase therapy
- Cure:
 - Only proven therapy: allogeneic hematopoietic stem cell transplantation (HSCT)
- Accelerated phase/blast crisis – induce second chronic phase

Imatinib (STI-571)

- Specific inhibitor of enzyme (tyrosine kinase) activated by BCR-ABL
- Dose
 - Chronic phase 400 mg oral daily
 - Accelerated phase/blast crisis 600-800 mg oral daily in divided doses
 - No modifications needed in mild or moderate liver or renal impairment
- Drug interactions
 - CYP3A4 substrate and inhibitor – use caution with potent inhibitors or inducers
 - Food: Take with a full meal and a large glass of water
- Dosage forms: 100 and 400 mg tablets

Pharmacodynamics – Imatinib Mesylate

- Imatinib mesylate occupies the ATP binding pocket of the Abl kinase domain
- This prevents substrate phosphorylation and signaling
- A lack of signaling inhibits proliferation and survival

Imatinib: Phase III IRIS Trial

- Patients with chronic-phase CML (N = 1106)
 - Imatinib 400 mg/day* (n = 553)
 - Interferon alfa 5 million U/m² daily
 - Cytarabine 20 mg/m² 10 days/mo
 - Crossover to Imatinib† (n = 364)
 - Permitted for no CHR at 6 months, no major cytogenetic response (MCyR) at 12 months, loss of response, or treatment intolerance. IRIS = International Randomized Study of Interferon vs STI571.

Chronic Myelogenous Leukemia: Considerations for Selecting and Managing Therapy

IRIS 8-Year Annual Event Rates

![IRIS 8-Year Annual Event Rates](image)

- Estimated EFS at 8 years = 81%
 - 1 progression to AP/BC and 2 non-CML related deaths occurred in year 8
- Estimated rate of freedom from progression to AP/BC at 8 years = 92%

6-Year Follow-up of Phase III IRIS Trial: Imatinib AEs

<table>
<thead>
<tr>
<th>Grade 3/4 Imatinib-Related Adverse Events (AEs),%</th>
<th>Years 1-2 (n = 551) (%)</th>
<th>After Year 4 (n = 409) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutropenia</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>8</td>
<td>< 1</td>
</tr>
<tr>
<td>Anemia</td>
<td>3</td>
<td>< 1</td>
</tr>
<tr>
<td>Elevated liver enzymes</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Other drug-related adverse events</td>
<td>14</td>
<td>2</td>
</tr>
</tbody>
</table>

- Severity of hematologic toxicity associated with worse outcomes
 - Patients with grade 3/4 hematologic AEs had more events (loss of CHR or MCyR, AP/BC, and death during treatment) than those with grade 1/2 AEs (P < .001)

Imatinib Monitoring

- After initiation of 400 mg PO daily
 - 3 months – assess hematologic remission
 - 6, 12, 18 months – bone marrow cytogenetics
- If not in complete remission
 - Assess patient adherence
 - Consider mutational analysis
- If partial remission, consider increase to 400 mg PO BID

Imatinib Adherence

- Claims data from 878 imatinib-treated patients from US health plan
 - 69% CML, 8% gastrointestinal stromal tumor (GIST), 23% other diagnoses
- Adherence defined as medication possession ratio (MPR)
 - MPR=Total days imatinib supply/365
- Mean MPR = 76%
 - Improved with age until 50
 - Decreased as number of medications increased
 - Lower in women than in men
 - Lower in patients with more cancer complications

Imatinib – Hematologic Monitoring Parameters

Chronic Phase CML – 400 mg PO daily

- Absolute neutrophil count (ANC) < 1,000/mm³
 - Platelet count (PLT) < 50,000/mm³
- Withhold imatinib and allow recovery to
 - ANC > 1,500/mm³ and PLT > 100,000/mm³
- Normal recovery (< 4 weeks)
 - Resume imatinib at 400 mg
- Slow recovery (> 4 weeks)
 - Resume imatinib at 300 mg
 - Escalate to 400 mg if myelosuppression does not recur for > 4 weeks

![Imatinib – Hematologic Monitoring Parameters](image)

Imatinib Monitoring

- Estimated OS is 85%
 - When counting only CML-related deaths, OS = 93%
 - Analysis of all deaths showed 3% of patients died after HSCT and 4% died from non–CML-related causes
- At 5 years, only 38 patients (7%) were lost to follow-up

Deininger et al. ASH 2009;114:Abs # 1126.

Chronic Myelogenous Leukemia:
Considerations for Selecting and Managing Therapy

Imatinib – Hematologic Monitoring Parameters
Advanced CML – 600 mg PO daily

- Platelet (PLT) < 10,000/mm³
 - 10,000–50,000/mm³ with minor bleeding
 - BM hypocellular and/or >30% blasts
 - BM hypercellular
- Absolute Neutrophil Count (ANC) < 5,000/mm³

Aggressiveness of disease

Imatinib – Monitoring Parameters
• Cardiomyopathy
• GI toxicity
 - Abrogate nausea/vomiting (N/V) by taking with food
• Edema
 - >50% patients, often periorbital edema
 - Increased risk for
 - Females, age >65, cardiac/renal disease
 - Start with 300 mg and titrate
 - Manage with diuretics
 - Stop drug and restart at a lower dose of imatinib for severe edema

Definitions of Imatinib Resistance and Intolerance

Imatinib Resistance in CP CML
- Primary
 - Rare (< 5%)
 - No CHR at 3 months or
 - No CCyR at 6 months or
 - No MCyR at 1 year
- Acquired
 - Loss of CHR or CCyR
 - Mutations — T315I

Imatinib Intolerance
- Inability to continue therapy despite optimal management of side effects

Potential Mechanisms of Resistance to Imatinib

Cell growth dependent on Bcr-Abl activity
- bcr-abl gene amplification/overexpression
- Mutations in the kinase domain
- Secondary genetic alterations

Cell growth independent of Bcr-Abl activity
- Imatinib
- Bcr-Abl
- Mutated Bcr-Abl
- Clonal evolution

Treatment Options for Refractory CML Patients
• Dose escalation of imatinib
• Second-generation TKI
 - Dasatinib
 - Nilotinib
• Allogeneic HSCT
• Donor lymphocyte infusion (relapse post-HSCT)
• Investigational therapy

Patient Case #1
• HS is a 59 yo male in excellent health and presents for his annual employment physical exam.
• The only medication he takes is hydrochlorothiazide 50mg PO daily for essential hypertension.
• Labs: WBC of 84,000/mm³; platelets were 197,000/mm³, hemoglobin 14.1g/dL. Chemistries are normal.
• He is referred for a clinic visit with a hematologist.
Chronic Myelogenous Leukemia: Considerations for Selecting and Managing Therapy

Patient Case #1

- The patient is diagnosed with CML based on findings from the peripheral smear, bone marrow biopsy, and cytogenetics - t(9;22).

Which of the following is the best option to lower the WBC count?

A. Allogeneic HSCT
B. Busulfan
C. Chlorambucil
D. Hydroxyurea

Which of the following is the best initial treatment for newly diagnosed CML?

A. Imatinib
B. Busulfan
C. Chlorambucil
D. Hydroxyurea

Which of the following is the optional treatment option for this patient with resistant disease?

A. Continue imatinib at present dose
B. Busulfan
C. Hydroxyurea
D. Second generation TKIs

Patient Case #1 (continued)

- The patient is treated with imatinib and achieved a CCyR and MMR at 7 and 12 months respectively, and continues in chronic phase at 28 months without any significant toxicity.

- When the patient comes back to his hematologist for routine follow-up he finds that his CML has progressed to accelerated phase.

Which of the following is the optimal treatment option for this patient with resistant disease?

A. Continue imatinib at present dose
B. Busulfan
C. Hydroxyurea
D. Second generation TKIs

TKI Activity vs. BCR-ABL Point Mutations

<table>
<thead>
<tr>
<th>TK Point Mutations</th>
<th>Imatinib</th>
<th>Dasatinib</th>
<th>Nilotinib</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT BCR-ABL</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>M244V</td>
<td>I</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>G250E</td>
<td>I</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Q252H</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Y253H</td>
<td>R</td>
<td>S</td>
<td>I</td>
</tr>
<tr>
<td>Y253F</td>
<td>R</td>
<td>S</td>
<td>I</td>
</tr>
<tr>
<td>E255K</td>
<td>R</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>E255V</td>
<td>R</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>V299L</td>
<td>S</td>
<td>I</td>
<td>NA</td>
</tr>
<tr>
<td>F317I</td>
<td>S</td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>

S = Highly Sensitive I = Intermediate Sensitivity R = Resistance

Quintas-Cardama A. Blood 2009; 113:1619.
Chronic Myelogenous Leukemia: Considerations for Selecting and Managing Therapy

Treatment – Accelerated Phase

- **Allogeneic HSCT**
 - Administration of induction chemotherapy prior to allogeneic HSCT to achieve second chronic phase is controversial

- **Imatinib mesylate**
 - CHR achieved in 29% patients on 400 mg/day and 41% patients on 600 mg/day (overall 37%)
 - Return to chronic phase in 26% with 400 mg/day and 17% with 600 mg/day (overall 20%);
 - MCyR in 18% patients on 400 mg/day and 30% on 600 mg/day (overall 26%)
 - CCR overall in 18% (higher in 600 mg/day group)\(^1\)

Treatment – Blast Crisis

- **Induction chemotherapy**:
 - Etoposide (100 mg/m\(^2\)/day) IV
 - Carboplatin (150 mg/m\(^2\)/day) CIV
 - Cytarabine (500 mg/m\(^2\)) IV q12h
 - all agents given on days 1–3 and 8–10

 - Lymphoid blast crisis more responsive to chemotherapy than myeloid;
 - VAC regimen had overall CR rate in 58% in 31 patients with median survival of 7 mo;

 - Consider allogeneic HSCT if second chronic phase achieved; many opt for palliative care\(^1\)

- **Imatinib**
 - 400 mg/day (n = 37) 600 mg/day (n = 223)
 - CHR overall in 4%; return to chronic phase in 19% overall (22% previously untreated, 15% treated)
 - MCR, 13.5% overall; CCR, 5% overall\(^2\)

IV = intravenous; CIV = ; AML = acute myelogenous leukemia; VAC = etoposide, intermediate-dose cytarabine, and carboplatin.

Second Generation Tyrosine Kinase Inhibitors

- **Response Rates: Dasatinib vs High-dose Imatinib**
 - Cyto genetic response
 - MCyR: P = 0.023
 - CCyR: P = 0.094
 - PCyR
 - Major molecular response
 - MMR: P = 0.038
 - Median follow-up: 15 months

Progression-free Survival: Dasatinib vs High-dose Imatinib

- Progression was defined as confirmed AP / BP, loss of CHR / MCyR, or increasing WBC count (doubling from the nadir to >20,000 on /g1492 assessments 2 weeks apart)

Study Design: Dasatinib vs High-dose Imatinib

- International, randomized, open label, phase II

12-week cytogenetic evaluation

Chronic Myelogenous Leukemia: Considerations for Selecting and Managing Therapy

Dasatinib Phase II Trials in Imatinib-Refractory Patients

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Chronic Phase1</th>
<th>Accelerated Phase2</th>
<th>Blast Crisis3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematologic Response</td>
<td>91%</td>
<td>63%</td>
<td>35%</td>
</tr>
<tr>
<td>Complete Cytogenetic Response</td>
<td>49%</td>
<td>24%</td>
<td>32%</td>
</tr>
<tr>
<td>Major Cytogenetic Response</td>
<td>59%</td>
<td>34%</td>
<td>39%</td>
</tr>
</tbody>
</table>

Clinical Trials of Dasatinib in CML-CP: Selected Non-Hematologic Adverse Events (all grades)

<table>
<thead>
<tr>
<th>Event</th>
<th>START-C</th>
<th>START-R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhea</td>
<td>32%</td>
<td>26%</td>
</tr>
<tr>
<td>Superficial edema</td>
<td>20%</td>
<td>13%</td>
</tr>
<tr>
<td>Pleural effusions</td>
<td>17%</td>
<td>11%</td>
</tr>
<tr>
<td>Increase serum transaminases</td>
<td>54%</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

Dasatinib: Dose and Schedule Optimization in CP-CML

- Hematologic and cytogenetic response (CHR, MCyR, CCyR) similar among all arms
- Progression-free survival significantly favors 100 mg/day vs 70 mg bid (P = 0.032)
- Safety: Significantly superior toxicity and tolerability profile with 100 mg/day compared to other arms:
 - Cardiac toxicity (P = 0.032)
 - Thrombocytopenia (P = 0.004)
 - Dose interruption (P = 0.047)
 - Dose reduction (P < 0.001)
 - Dose escalation (P = 0.037)
- Dasatinib 100 mg PO daily is the optimal dose for CP-CML

Dasatinib: Dose and Schedule Optimization in CP-CML

- Hematologic and cytogenetic response (CHR, MCyR, CCyR) similar among all arms
- Progression-free survival significantly favors 100 mg/day vs 70 mg bid (P = 0.032)
- Safety: Significantly superior toxicity and tolerability profile with 100 mg/day compared to other arms:
 - Cardiac toxicity (P = 0.032)
 - Thrombocytopenia (P = 0.004)
 - Dose interruption (P = 0.047)
 - Dose reduction (P < 0.001)
 - Dose escalation (P = 0.037)
- Dasatinib 100 mg PO daily is the optimal dose for CP-CML

Hematologic Toxicity Dasatinib vs High-dose Imatinib

Dasatinib 70 mg BID in CP-CML Progression-Free Survival

Progression was defined as confirmed AP / BP, loss of CHR / MCyR, or increasing WBC count.

Clinical Trials of Dasatinib in CML-CP: Selected Non-Hematologic Adverse Events (all grades)

<table>
<thead>
<tr>
<th>Event</th>
<th>START-C</th>
<th>START-R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhea</td>
<td>32%</td>
<td>26%</td>
</tr>
<tr>
<td>Superficial edema</td>
<td>20%</td>
<td>13%</td>
</tr>
<tr>
<td>Pleural effusions</td>
<td>17%</td>
<td>11%</td>
</tr>
<tr>
<td>Increase serum transaminases</td>
<td>54%</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

Dasatinib: Dose and Schedule Optimization in CP-CML

- Hematologic and cytogenetic response (CHR, MCyR, CCyR) similar among all arms
- Progression-free survival significantly favors 100 mg/day vs 70 mg bid (P = 0.032)
- Safety: Significantly superior toxicity and tolerability profile with 100 mg/day compared to other arms:
 - Cardiac toxicity (P = 0.032)
 - Thrombocytopenia (P = 0.004)
 - Dose interruption (P = 0.047)
 - Dose reduction (P < 0.001)
 - Dose escalation (P = 0.037)
- Dasatinib 100 mg PO daily is the optimal dose for CP-CML

Chronic Myelogenous Leukemia: Considerations for Selecting and Managing Therapy

Nilotinib Phase II Trials in Imatinib Refractory Patients

<table>
<thead>
<tr>
<th></th>
<th>Chronic Phase N=280</th>
<th>Accelerated Phase N=119</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematologic Response</td>
<td>74%</td>
<td>47%</td>
</tr>
<tr>
<td>Major Cytogenetic Response</td>
<td>48%</td>
<td>29%</td>
</tr>
<tr>
<td>Complete Cytogenetic Response</td>
<td>31%</td>
<td>19%</td>
</tr>
</tbody>
</table>

OS in CML-CP Treated with Nilotinib

OS in CML-AP Treated with Nilotinib

Select Nilotinib Toxicities

<table>
<thead>
<tr>
<th>Toxicity</th>
<th>Overall</th>
<th>Grade III/IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutropenia</td>
<td></td>
<td>29%</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td></td>
<td>29%</td>
</tr>
<tr>
<td>Anemia</td>
<td></td>
<td>13%</td>
</tr>
<tr>
<td>Rash</td>
<td>28%</td>
<td>3%</td>
</tr>
<tr>
<td>Nausea</td>
<td>24%</td>
<td>1%</td>
</tr>
<tr>
<td>Pruritis</td>
<td>24%</td>
<td>1%</td>
</tr>
<tr>
<td>Fatigue</td>
<td>19%</td>
<td>1%</td>
</tr>
<tr>
<td>Headache</td>
<td>11%</td>
<td>1%</td>
</tr>
<tr>
<td>Constipation</td>
<td>12%</td>
<td>0%</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>11%</td>
<td>2%</td>
</tr>
<tr>
<td>QT prolongation</td>
<td>1%</td>
<td></td>
</tr>
</tbody>
</table>

Patient Case #2

- A 72 yo patient was enrolled in the original IRIS trial and had a 6 year period of progression-free survival on imatinib 400 mg PO daily.
- She subsequently progressed to AP CML and was started on dasatinib 140 mg PO daily with an initial CCyR at 6 months. At that time, she presented with a pleural effusion.

What is the best option for maintaining long-term disease control for this patient while minimizing toxicity?

A. Switch back to imatinib at 400 mg PO daily
B. Switch back to imatinib but increase dose to 600 mg PO daily
C. Start nilotinib 400 mg PO BID
D. Allogeneic stem cell transplant
Chronic Myelogenous Leukemia: Considerations for Selecting and Managing Therapy

TKI Comparison - Summary

<table>
<thead>
<tr>
<th></th>
<th>Imatinib</th>
<th>Dasatinib</th>
<th>Nilotinib</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic phase dose</td>
<td>400 mg PO daily</td>
<td>100 mg PO daily</td>
<td>400 mg PO BID</td>
</tr>
<tr>
<td>Food effect</td>
<td>With food (improved tolerability)</td>
<td>With or without food (avoid acid reducers)</td>
<td>Empty stomach (safety)</td>
</tr>
<tr>
<td>Fold potency against BCR-ABL</td>
<td>1</td>
<td>300</td>
<td>25</td>
</tr>
<tr>
<td>Metabolism</td>
<td>CYP3A4 substrate/inhibitor</td>
<td>CYP3A4 substrate</td>
<td>CYP3A4 substrate/inhibitor (also 2C8, 2C9, 2D6)</td>
</tr>
</tbody>
</table>

Chronic Myeloid Leukemia

Role of Hematopoietic Stem Cell Transplant (HSCT)

- **Cure**
 - Allogeneic stem cell transplant
 - Considerable toxicity
 - Lack of donor

- **Maintain disease in chronic phase**
 - Evolving role of TKIs post-HSCT

CML-CP – HSCT Outcomes

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Overall Survival</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allogeneic HSCT</td>
<td>Matched sibling donor = 50%–70% long-term DFS</td>
<td>Proven curative therapy; mortality up to 30%; relapse rate = 15%–20%; presence of GVHD decreases relapse rate; outcome improved if early BMT*</td>
</tr>
<tr>
<td>Unrelated donor allogeneic HSCT</td>
<td>40%–50% long-term DFS for early transplant</td>
<td>Curative option, early mortality up to 50%; risk of GVHD and infection increased; younger patients fare better2</td>
</tr>
</tbody>
</table>

DFS = disease-free survival; GVHD = graft-versus-host disease; OS = overall survival; BMT = bone marrow transplant.

Historical Data for HSCT in CML

Available at: http://www.marrow.org/PHYSICIAN/Outcomes_Data/index.html#transplant
Chronic Myelogenous Leukemia: Considerations for Selecting and Managing Therapy

Phase III Front-line Data for Nilotinib

R A N D O M I Z E

N = 846 patients with newly diagnosed Ph positive CML randomized 1:1:1

Imatinib 400 mg daily

Nilotinib 300 mg BID

Nilotinib 400 mg BID

Stratification:
Sokal score

Primary endpoint:
MMR at 12 months
All patients 12 months minimum treatment

Median follow-up:
14 months

Efficacy Results

Parameter

Nilotinib 300 mg BID

Nilotinib 400 mg BID

Imatinib 400 mg daily

MMR at 12 months
44% (P<.0001)
43% (P<.0001)
22%

CCyR at 12 months
80% (P<.0001)
78% (P=.0005)
65%

Progression to AP/BC
<1% (P=.0095)
<1% (P=.0037)
4%

Grade III/IV Toxicity Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nilotinib 300mg PO BID</th>
<th>Nilotinib 400mg PO BID</th>
<th>Imatinib 400mg PO daily</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutropenia</td>
<td>12%</td>
<td>10%</td>
<td>20%</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>10%</td>
<td>12%</td>
<td>9%</td>
</tr>
<tr>
<td>Anemia</td>
<td>3%</td>
<td>3%</td>
<td>5%</td>
</tr>
<tr>
<td>Rash</td>
<td>1%</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td>↑ Total Bil</td>
<td>4%</td>
<td>8%</td>
<td>1%</td>
</tr>
<tr>
<td>↑ ALT</td>
<td>4%</td>
<td>9%</td>
<td>2%</td>
</tr>
<tr>
<td>↑ AST</td>
<td>1%</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td>↑ Lipase</td>
<td>6%</td>
<td>6%</td>
<td>3%</td>
</tr>
<tr>
<td>↑ Phosphate</td>
<td>5%</td>
<td>5%</td>
<td>3%</td>
</tr>
</tbody>
</table>

Long-term Complications Post-HSCT

<table>
<thead>
<tr>
<th>Disease</th>
<th>Transplant N = 248</th>
<th>Sibling Controls N = 317</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eye</td>
<td>49%</td>
<td>14%</td>
</tr>
<tr>
<td>Oral health</td>
<td>26%</td>
<td>13%</td>
</tr>
<tr>
<td>Endocrine</td>
<td>25%</td>
<td>11%</td>
</tr>
<tr>
<td>Bone/joint</td>
<td>13%</td>
<td>3%</td>
</tr>
<tr>
<td>Cardiopulmonary</td>
<td>33%</td>
<td>26%</td>
</tr>
<tr>
<td>GI</td>
<td>17%</td>
<td>9%</td>
</tr>
<tr>
<td>Neurosensory</td>
<td>40%</td>
<td>20%</td>
</tr>
<tr>
<td>Neuromotor</td>
<td>21%</td>
<td>6%</td>
</tr>
</tbody>
</table>

Historical Data for HSCT in CML

National Marrow Donor Program (NMDP) overview slide presentation.
Available at: http://www.marrow.org/PHYSICIAN/Outcomes_Data/index.html#transplant

Available at: http://www.marrow.org/PHYSICIAN/Outcomes_Data/index.html#transplant

Phase III Dasatinib Front-line

R A N D O M I Z E

N = 519 patients with newly diagnosed Ph positive CML randomized 1:1

Dasatinib 100 mg

Imatinib 400 mg

Stratification:
Hasford risk score

Primary endpoint:
CCyR at 12 months
All patients 12 months minimum treatment

Minimum follow-up:
12 months

Chronic Myelogenous Leukemia: Considerations for Selecting and Managing Therapy

Efficacy Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Dasatinib (n=259)</th>
<th>Imatinib (n=260)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCyR at 12 months</td>
<td>77%*</td>
<td>66%</td>
</tr>
<tr>
<td>MMR at 12 months</td>
<td>46%**</td>
<td>28%</td>
</tr>
</tbody>
</table>

* P<0.0001
** P<0.007

Grade III/IV Toxicity Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Dasatinib 100mg PO daily</th>
<th>Imatinib 400mg PO daily</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutropenia</td>
<td>21%</td>
<td>20%</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>19%</td>
<td>10%</td>
</tr>
<tr>
<td>Anemia</td>
<td>10%</td>
<td>7%</td>
</tr>
<tr>
<td>Fluid Retention</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>Pleural Effusion**</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Diarrhea</td>
<td><1%</td>
<td>1%</td>
</tr>
<tr>
<td>Musculoskeletal Pain</td>
<td>0%</td>
<td>1%</td>
</tr>
<tr>
<td>Myalgia</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Rash</td>
<td>0%</td>
<td>1%</td>
</tr>
</tbody>
</table>

* Grade I or II pleural effusions reported in 10% of dasatinib patients

Remaining Questions in CML Treatment

- Is 400 mg/day the right initial dose of imatinib?
- Dasatinib or nilotinib following imatinib?
 - Long-term survival data still ongoing
- When to offer allogeneic transplant?
- Role of dasatinib/nilotinib in initial disease management is evolving
- How crowded can this market become?
 - Bosutinib
- Treatment for T315I mutations
 - Omacetaxine
 - AP24534
Chronic Myelogenous Leukemia: Considerations for Selecting and Managing Therapy

SELECTED REFERENCES

Druker BJ. Translation of the Philadelphia chromosome into therapy for CML. Blood. 2008; 112:4808-17.

REFERENCES (continued)

Chronic Myelogenous Leukemia: Considerations for Selecting and Managing Therapy

REFERENCES (continued)

Chronic Myelogenous Leukemia:
Considerations for Selecting and Managing Therapy

REFERENCES (continued)

Chronic Myelogenous Leukemia: Considerations for Selecting and Managing Therapy

SELF-ASSESSMENT QUESTIONS

1. The only proven curative therapy for chronic myelogenous leukemia (CML) is:
 a. Allogeneic stem cell transplant.
 b. Autologous stem cell transplant.
 c. Hydroxyurea.
 d. Imatinib.

2. A notable finding of the six year follow-up from the IRIS trial for CML was:
 a. Most patients treated in the imatinib arm crossed over to treatment with interferon alfa and cytarabine because of significant toxicity caused by imatinib.
 b. Toxicity with imatinib over the five years was cumulative and led to a significant drop out rate in the study.
 c. Most patients treated with imatinib did not achieve a cytogenic or molecular response over the course of treatment.
 d. Imatinib maintained chronic phase in excess of 90% of patients with minimal toxicity over the study period.

3. Reasonable second-line treatment for CML following imatinib failure includes all the following EXCEPT:
 a. Allogeneic stem cell transplant.
 b. Hydroxyurea.
 c. Dasatinib.
 d. Nilotinib.

4. Which BCR-ABL kinase mutation is truly resistant to all kinase inhibitors developed so far?
 a. M224V.
 b. E255K.
 c. F359V.
 d. T315I.

Answers

1. a
2. d
3. b
4. d
Chronic Myelogenous Leukemia: Considerations for Selecting and Managing Therapy

Activity Evaluation Form

August 27, 2010 Joseph S. Bubalo, Pharm.D., BCPS, BCOP Oakbrook Terrace, IL

ASHP Advantage appreciates your participation in this educational activity and values your feedback. Please complete this brief evaluation form to assist us in improving the quality of future educational activities.

1 = strongly disagree 2 = disagree 3 = neither agree nor disagree 4 = agree 5 = strongly agree

Evaluation of Educational Objectives

<table>
<thead>
<tr>
<th>After attending this knowledge-based CPE activity, I am able to</th>
<th>Strongly Disagree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Describe the epidemiology, molecular biology, clinical presentation, and disease progression of chronic myelogenous leukemia (CML).</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>2. Describe the currently accepted standard treatments and response monitoring parameters for CML.</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>3. Describe the role of second-generation tyrosine kinase inhibitors (TKIs) in imatinib-resistant CML and emerging evidence related to their use.</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>4. Identify options for preventing and managing toxicities, drug-drug interactions, and drug-food interactions related to TKIs.</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>5. Identify areas of emerging research related to therapies for CML.</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
</tbody>
</table>

Evaluation Content

<table>
<thead>
<tr>
<th></th>
<th>Strongly Disagree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The content presented was relevant to the target audience</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>2. I will be able to apply the knowledge skills I learned</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>3. The activity fulfilled my education needs</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>4. The activity enhanced my ability to apply learning objectives to my practice</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>5. Based on my previous knowledge and experience, the content level of the activity for attending audience was:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ Too basic ☐ Appropriate ☐ Too Complex</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Faculty/Instructional Materials

<table>
<thead>
<tr>
<th></th>
<th>Strongly Disagree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. The teaching methods were effective</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>7. The instructional materials were effective</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
</tbody>
</table>

Continue on next page
Chronic Myelogenous Leukemia: Considerations for Selecting and Managing Therapy

Faculty/Instructional Materials (continued)

8. Please indicate the extent to which you agree or disagree with the following statement: “Faculty statements and therapeutic recommendations in this activity were based on supported evidence or professional opinion and did NOT evidence commercial bias.”

☐ Strongly Disagree ☐ Disagree ☐ Agree ☐ Strongly Agree

9. If you answered strongly disagree or disagree to question 8, what commercial bias did you perceive in this activity?

__

10. What did you find to be the most helpful aspect of this activity?

__

11. What was the least helpful aspect of this activity?

__

12. List ONE (and no more than three) changes that you intend to make in your practice as a result of this activity.

__

13. How confident are you that you will be able to apply these changes in your practice?
 a. Very confident
 b. Somewhat confident
 c. Not confident

14. Please indicate any barriers you perceive to implementing these changes.
 a. Cost
 b. Lack of experience
 c. Lack of resources
 d. Lack of administrative support
 e. Other, please specify: ___

15. What question(s) do you still have about this topic?

__

16. Based on your educational needs, list any topics you would like to see addressed in future educational activities.

__

17. Other comments or suggested improvements:

__

18. Using the following scale, in the table below rate presentation skills, content knowledge, degree of balance, objectivity, and scientific rigor of faculty:

 1 = very poor 2 = poor 3 = average 4 = above average 5 = excellent

<table>
<thead>
<tr>
<th>Presentation Skills</th>
<th>Knowledge of Content</th>
<th>Degree of Balance, Objectivity, & Scientific Rigor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joseph S. Bubalo, Pharm.D., BCPS, BCOP</td>
<td>1 2 3 4 5</td>
<td>1 2 3 4 5</td>
</tr>
</tbody>
</table>

24