

Learning Objectives

- Describe the underlying pathophysiology, risk factors, and risk stratification of hospitalized patients with hyponatremia
- Identify the mechanisms in which hyponatremia complicates the management of chronic medical conditions
- Assess the pharmacists role and current treatment options for hyponatremia in the hospital setting.
- Examine the role of vasopressin receptor antagonists in the management of hyponatremia in the hospitalized patient

PLEASE ANSWER THE HYPONATREMIA PRE-ACTIVITY TEST QUESTIONS

Question 1

How confident are you in your ability to summarize the Hyponatremia Treatment Guidelines: 2007 Expert Panel Recommendations?

- 1. Not at all confident
- 2. Somewhat confident
- 3. Confident
- 4. Very Confident
- 5. Extremely Confident

Question 2

Compared with standard diuretics, vasopressin receptor antagonists act at a different site of the nephron to induce selective water diuresis without affecting sodium and potassium excretion.

- A. True
- B. False

Patient Case: Asymptomatic Hyponatremia

- 75-yo female, stable CHF and type 2 DM
- Fell while coming down the stairs in herhouse, now severe leg pain, pleuritic chest pain, SOB
- ER: left hip fracture, multiple rib fractures, small pleural effusions bilaterally, no pneumothorax
- Admitted to ICU for monitoring, physical exam: patient is awake and oriented; blood pressure is 130/80; no focal neurological deficits; bibasilar rales; point tenderness over rib cage

Patient Case: Asymptomatic Hyponatremia

Labs:

Na = 128, K = 3.4, Cl = 104, HCO3 = 24 glucose = 185, BUN = 20, Cr = 1.3 Hct = 36

Posm = 275, Uosm = 350, UNa+ = 60

O2 sat = 90% room air

Question 3

Is this patient a candidate for vasopressin antagonist therapy for hyponatremia?

A. Yes

B. No

How common is hyponatremia in your institution or practice? You see hyponatremia in:

- A. Less than 5% of patients
- B. 5-10% of patients
- C. 10-15% of patients
- D. More than 10% of patients

Question 5

According to data from the Study of Ascending Levels of Tolvaptan in Hyponatremia 1 and 2 (SALT 1 and 2) serum sodium concentrations ______in the tolvaptan group when compared to the placebo group during the first 4 days and after the full 30 days of therapy.

- A. Did not change
- B. Increased
- C. Decreased
- D. Were equal

Question 6

Of patients treated for hyponatremia, what percentage are initially treated as inpatients?

- A. 10% 25%
- B. 26% 43%
- C. 44% 54%
- D. 55%-63%

Which of the following non-peptide AVP receptor antagonists is available as an intravenous (IV) formulation:

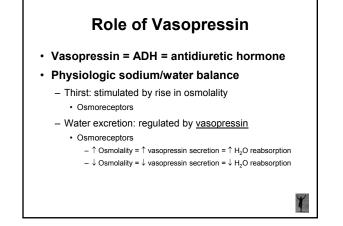
A. Tolvaptan

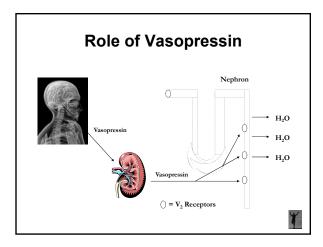
- B. Conivpatan
- C. Lixivaptan
- D. Satavaptan

Hyponatremia

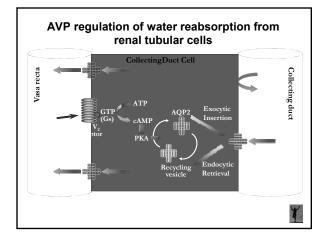
Most common electrolyte abnormality

Associated with many systemic diseases

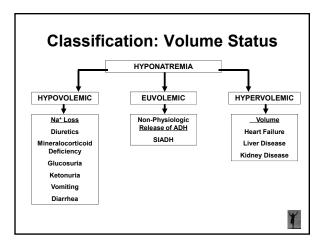

- Major: dilution of extracellular fluid

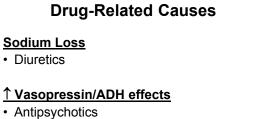

- Minor: total body losses of sodium

Acute vs. Chronic


- Often duration is difficult to determine

Hyponatremia can be caused by <u>dilution</u> from retained water, or by <u>depletion</u> from electrolyte losses in excess of water





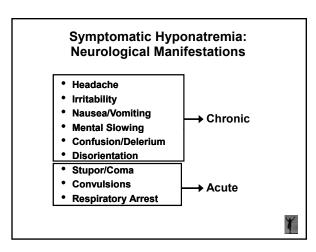
Classification: Osmolality

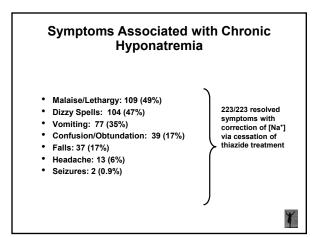
- Hypotonic hyponatremia
 - Sodium directly related to osmolality
 - Most cases
- Isotonic/Hypertonic hyponatremia
 - Pseudohyponatremia
 - Non-sodium solutes increase osmolality · Glucose
 - \uparrow osmolality \rightarrow fluid shifts \rightarrow dilution of sodium

- · Antidepressants
- DDAVP
- Oxytocin

Risk Stratification

1

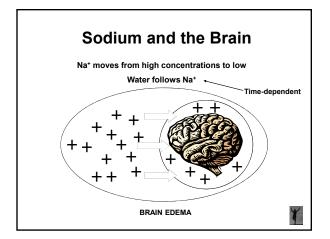

Acute vs. Chronic

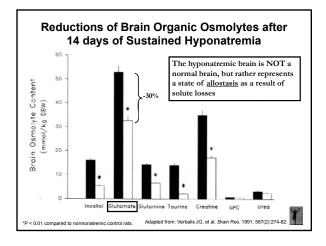

Acute = less than 48 hours in duration Concerned about neurologic sequellae Osmotic differential between brain and blood

- Brain swelling
 Chronic = greater than 48 hours in duration
 Symptoms may be more modest
 - Brain has time to adapt

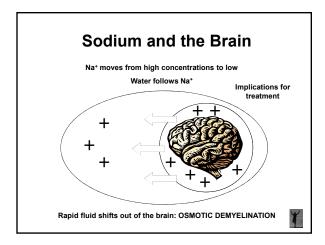
Duration of hyponatremia

- How aggressive?
- How fast?

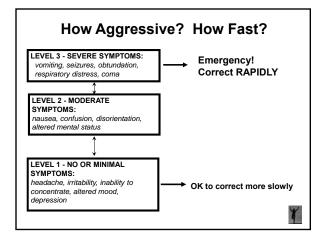




Group	n	Falls	Odds Ratio	Adjusted Odds Ratio*
"Asymptomatic"Chronic Hyponatremia	122	21.3%	9.45 (2.64-34.09) p <.001	67.43 (7.48-607.42) p <.001
Normonatremic controls	244	5.35%	1.00	1.00


Acute vs. Chronic and the Brain

Acute hyponatremia


- Rapid onset
- Greater likelihood of rapid fluid shifts and brain edema

Chronic hyponatremia

- Insidious onset
- Less likelihood for brain edema
 - Time for compensatory increases in organic osmolytes

Hyponatremia and Heart Failure

Implications of Hyponatremia

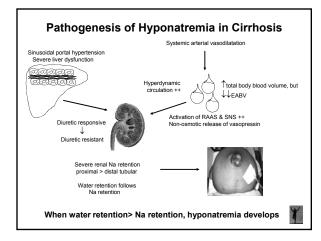
Heart failure

- There are an estimated 7 million Americans with HF (2% of US population).
- Hyponatremia is one of the newer and emerging risk factors for an adverse prognosis in chronic heart failure
- Inadequate release of vasopressin may result in excess fluid retention and hyponatremia.

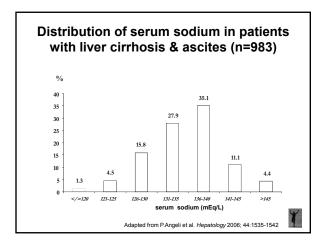
In-hospital mortality risk groups according to the ADHERE risk stratification

- Age > 78 years → 1.88 (1.74 2.04)
- BUN > 42 → 3.34 (3.08 3.62)
- SCr > 3.2 → 1.99 (1.78 2.24)
- SBP ≤ 115 → 3.09 (2.85 3.35)
- DBP ≤ 55 → 2.87 (2.62 3.14)
- Serum Na+ < 134 → 2.26 (2.08 2.47)
- HR > 84 → 1.20 (1.11 1.30)
- Dyspnea at Rest → 1.57 (1.45 1.70)

Abraham WT, et al. JACC 2005;46:57-64


Hyponatremia and Liver Disease

Implications of Hyponatremia


¥

Liver Disease

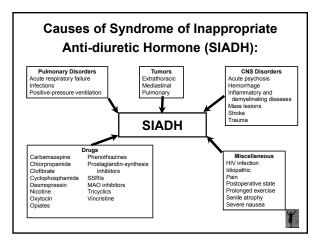
- Associated with poor prognosis & reduced survival
- · Impairs the management of ascites
- · Predisposes to hepatic encephalopathy
- · Impairs quality of life

Serum Sodium and Mortality

Liver Transplant candidates in the VA system, 97-03 (n= 507) - Hepatitis C (68%), EtOH (67%) - MELD 16.2 ± 6.7 - Hyponatremia (<130 mEq/L): 31%

- Persistent Ascites/Hydrothorax: 38%

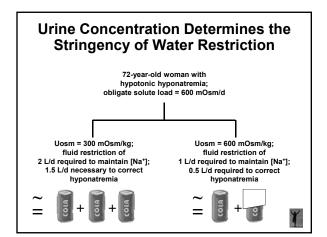
· Predictors of 6-month mortality

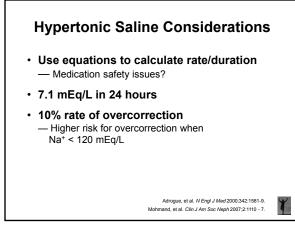

	Odds Ratio	р
MELD	1.25 (1.16-1.35)	<0.001
Na < 135 mEq/L	2.76 (1.31-5.81)	0.008
Persistent Ascites	2.72 (1.31-5.71)	0.008
	Heuman DM, et al. Hepatology	x 2004;40(4):802-10.

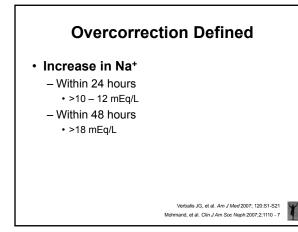
Syndrome of inappropriate antidiuretic hormone (SIADH) secretion

Syndrome of Inappropriate Anti-diuretic Hormone (SIADH): Essential Criteria

- True plasma hypoosmolality
- Urine concentration inappropriate for plasma osmolality (U_{osm} > 100 mOsm/kg H₂O)
- Clinical euvolemia, no diuretic therapy
- Absent renal sodium conservation (U_{Na} > 30 mmol/L)
- Normal thyroid, adrenal and renal function


Bartter FC, et al. Am J Med. 1967; 42:790-806.


AGENT	LIMITATIONS
Fluid restriction	 Slow to correct over days (1-2 mEq/L/day)
	Poorly tolerated due to thirst
	Should not be used with high AVP level and urine osmolality
Diuretics	Allows relaxation of fluid restriction
	- Potential for ototoxicity, volume depletion, and K^* and Mg^* depletion
Demeclocycline	Not FDA approved for hyponatremia
	Slow to correct over days
	Nephrotoxic in cirrhosis and heart failure
Lithium	Slow to correct
	Must monitor serum levels
	CNS side effects, cardiotoxic, GI disturbances



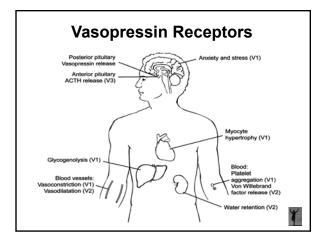
AGENT	LIMITATIONS
Isotonic saline	Ineffective in dilutional hyponatremia
	Should not be used in setting of edema
	No safety data
	Complex calculations
Hypertonic saline	No consensus regarding appropriate infusion rates
	Overcorrection can cause osmotic demyelination syndrome
	Should not be used in setting of edema
	No safety data
	Complex calculations

What do they do?

Diuresis:

increased excretion of urine by the kidney; includes water and typically increased solute excretion as well

Aquaresis:


increased excretion of water by the kidney without increased solute, i.e., electrolyte-sparing excretion of free water by the kidney

> Newest Option for Hyponatremia: Vasopressin Antagonists

> > Y

	Conivaptan	Lixivaptan	Satavaptan	Tolvaptan
Receptor	V _{1a} /V ₂	V ₂	V ₂	V ₂
Route of administration	IV	Oral	Oral	Oral
Urine volume	↑	↑	↑	↑
Urine osmolality	t	Ļ	Ļ	t
Na⁺ excretion/ 24 hrs	↔	↔ low dose ↑high dose	↔	↔

CONIVAPTAN

Conivaptan: Pivotal Phase III Trial

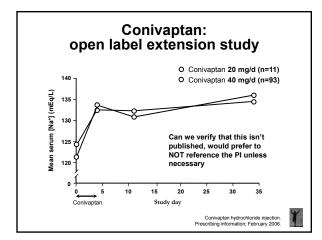
- R, MC, DB, PC
- n = 84 patients
- 4 day continuous infusion
 - Placebo
 - Conivaptan 40mg/day
 - Conivaptan 80mg/day
- Primary endpoint
 - Δ in serum sodium from baseline (AUC)
- Secondary endpoints
 - Time from 1st dose to sodium ≥ 4mEq/L, time sodium ≥ 4mEq/L from baseline, # patients with ≥ 6mEq/L increase in sodium or normal (≥135mEq/L).

Zeltser D, et al. Am J Nephrol 2007;27:447-57.

Patient Population

Inclusion criteria

- Age > 18 years
- Serum Na⁺ = 115 130mEq/L
- Posm < 290mOsm/kg</p>
- Fasting BG < 275mg/dl
 Euvolemic or hypervolemic

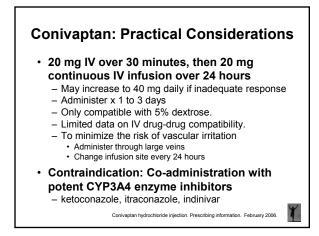

Exclusion criteria

- Hypovolemic hyponatremiaUncontrolled HTN, bradyarrhythmia or tachyarrhythmias
- Medications interact with CYP3A4
- Emergent treatment for hyponatremia

Zeltser D, et al. Am J Nephrol 2007;27:447-57.

Endpoint	Placebo N = 29	Con 40mg IV N = 29	Con 80mg IV N = 26
Δ in baseline Na AUC, mean (SE), mEq*h/L	12.9 (61.2)	490.9 (56.8) [†]	716.6 (60.4) †
Time 1 st dose to Na <u>></u> 4mEq/L from BL, median hrs (95% CI)	NE	23.7 (95%Cl 10.0, 24.0) †	23.4 (95%Cl 6.0, 24.0) †
Total time serum Na above baseline, mean (SE), h	14.2 (5.25)	53.2 (5.17) †	72.7 (5.43) †
Change in Na from baseline to end of treatment, mean (SE), mEq/L	0.8 (0.80)	6.3 (0.74) †	9.4 (0.79) †
Increase Na \geq 6mEq/L or > 135mEq/L, n (%)	6 (20.7%)	20 (69.0%) †	23 (88.5%) †

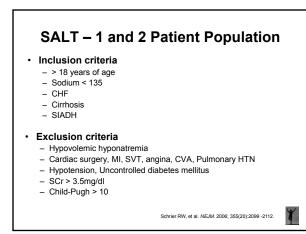
	Placebo (n=29)	Con 40 mg (n=29)	Con 80 mg (n=26)
Phlebitis	6.9%	24.1%	30.8%
Hypotension	6.9%	13.8%	19.2%
Postural Hypotension	0%	13.8%	3.8%
Injection Site Inflammation	0%	6.9%	11.5%
Pyrexia	0%	10.3%	7.7%
Hyperkalemia	3.4%	0%	
Injection-site Thrombosis	0%	10.3%	0%
Overcorrection	0%	6.9%	7.7%



Special Populations: Heart Failure

- Do not use to TREAT heart failure
 - No benefit
 - No worsening of heart failure
- Risk of adverse effects must be outweighed by anticipated benefits of increasing sodium

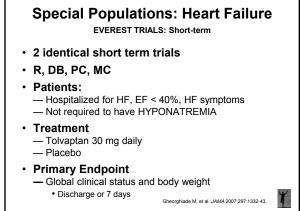
Series	n	Dosing	Timing	6mEq/L Rise	Safety
#1	22	Bolus + Infusion	24 hrs	86%	No excessive correction
				24h post D/C = 47%	5 pts with phlebitis
#2	24	Bolus only*	72 hrs	Single Bolus: 56%	1 pt with excessive
				Double Bolus:	correction
				52%	No phlebitis

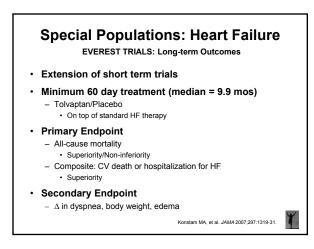

TOLVAPTAN

SALT – 1 and SALT – 2

Study of Ascending Levels of Tolvaptan in Hyponatremia

- Two MC, R, DB, PC trials
 - Tolvaptan 15 mg (increased to 30 60 mg)
 - Placebo
- Primary Endpoints:
 - $-\Delta$ in AUC for the serum Na⁺ concentration
 - Baseline to day 4
 - · Baseline to day 30


Schrier RW, et al. NEJM. 2006; 355(20):2099 -2112.



SALT	— 1 F	RESU	ILTS
------	-------	------	------

Endpoint	Placebo n = 103	Tolvaptan n = 103	p-value
All Patients: Day 4	0.25 ± 2.08	3.62 ± 2.68	< 0.001
All Patients: Day 30	1.66 ± 3.59	6.22 ± 4.10	< 0.001
Mild (130 – 135 mmol/L): Day 4	- 0.32 ± 2.27	2.52 ± 1.95	< 0.001
Mild (130 – 135 mmol/L): Day 30	0.68 ± 2.78	3.87 ± 3.01	< 0.001
Marked (< 130 mmol/L): Day 4	0.76 ± 1.77	4.56 ± 2.88	< 0.001
Marked (< 130 mmol/L): Day 30	2.54 ± 4.01	8.24 ± 3.84	< 0.001

Special Populations: Heart Failure

EVEREST TRIALS: Results

The Endpoints

Short – term results

Global clinical status and body weight
 – Improvement with tolvaptan

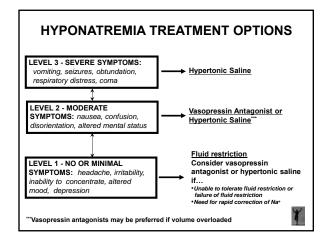
Long - term results

- All-cause mortality
 No difference
- Composite: CV death or hospitalization for HF
 No difference
- Δ in dyspnea, body weight, edema
 - Improvement with tolvaptan
 - Konstam MA, et al. JAMA 2007;297:1319-31 Gheorohiade M. et al. JAMA 2007:297:1332-43

Tolvaptan [package insert]; 2009.

Tolvaptan: Practical Considerations

- · Indicated for symptomatic hyponatremia
 - < 125mEq/L
 Unresponsive to correction with fluid restriction
 - In-hospital initiation
- Administered by oral route once daily
 15 mg/30 mg/60 mg
- Contraindication: Co-administration with potent CYP3A4 enzyme inhibitors
 - ketoconazole, itraconazole, indinivar
- Patients should be encouraged to drink when thirsty
- Co-administration with hypertonic saline: NR


Tolvaptan Adverse Effects

SALT studies

- · No osmotic demyelination
- Excessive Na⁺ correction = 1.8%

EVEREST

- Thirst
- Polyuria
- · Pollakiuria
- Hypernatremia

Vasopressin Antagonist Formulary Considerations

- Vasopressin antagonist vs. Hypertonic Saline?
 - Unable to tolerate fluids
 - Degree of hyponatremia
- Restrict to a specific service?
 Endocrine, nephrology, hepatology?
- Tolvaptan and insurance status – Reversible effect on sodium upon discontinuation

Conclusions

Considerations in Management

- Pathophysiology/Classification
- Symptoms (Type, Severity, Duration, Onset)
- Underlying disease states
- Primary treatment options
 - Fluid restriction, Hypertonic saline, Vasopressin receptor antagonists
- Role of the pharmacist
 - Global policies related to use
 - Agent selection
 - Monitoring

How confident are you in your ability to summarize the Hyponatremia Treatment Guidelines: 2007 Expert Panel Recommendations?

- 1. Not at all confident
- 2. Somewhat confident
- 3. Confident
- 4. Very Confident
- 5. Extremely Confident

Question 9

Of patients treated for hyponatremia, what percentage are <u>initially</u> treated as inpatients?

Y

- A. 10% 25%
- B. 26% 43%
- C. 44% 54%
- D. 55%-63%

Compared with standard diuretics, vasopressin receptor antagonists act at a different site of the nephron to induce selective water diuresis without affecting sodium and potassium excretion.

A. True

B. False

Patient Case: Asymptomatic Hyponatremia

- 75-yo female, stable CHF and type 2 DM
- Fell while coming down the stairs in her house, now experiencing severe leg pain and pleuritic chest pain
- ER: left hip fracture, multiple rib fractures, small pleural effusions bilaterally, no pneumothorax
- Admitted to ICU for monitoring, physical exam: patient is awake and oriented; blood pressure is 130/80; heart rate is 76 bpm; no focal neurological deficits; bibasilar rales; point tenderness over rib cage

Patient Case: Asymptomatic Hyponatremia

Labs:

Na = 128, K = 3.4, Cl = 104, HCO3 = 24 glucose = 185, BUN = 20, Cr = 1.3 Hct = 36

Posm = 275, Uosm = 350, UNa+ = 60

O2 sat = 90% room air

According to the ADHERE risk stratification which of the following factors places this patient at risk for mortality?

- A. Her age
- B. Her blood urea nitrogen (BUN)
- C. Her Serum Na+
- D. Her heart rate

Question 12

The hyponatremic brain is NOT a normal brain, but rather represents a state of _____as a result of solute losses.

- A. Allostasis
- B. Homeostasis
- C. Static serum osmolality
- D. Normonatremia

Question 13

SIADH is characterized by (1) the presence of hyponatremia, (2) low plasma osmolality without volume depletion or edema, (3) high urine osmolality >100 mOsm/kg, (4) urine [Na*] excretion >20 mEq/L, and (5) normal renal, adrenal, thyroid, and cardiac function.

A. True

B. False

Which of the following is not a neurological manifestations commonly seen in cases of acute symptomatic hyponatremia?

A. Stupor/Coma

B. Convulsions

C.Atopy

D. Respiratory Arrest

Question 15

According to data from the Study of Ascending Levels of Tolvaptan in Hyponatremia 1 and 2 (SALT 1 and 2) serum sodium concentrations ______in the tolvaptan group when compared to the placebo group during the first 4 days and after the full 30 days of therapy.

- A. Did not change
- B. Increased
- C. Decreased
- D. Were equal

Question 16

How do you anticipate that your attendance at this educational program will change your clinical practice? (Please select all that apply)

- 1. Improve my ability to recommend/develop institutional protocols for hyponatremia management
- 2. Improve my compliance with Hyponatremia Treatment Guidelines: 2007 Expert Panel Recommendations
- 3. Improve my ability to risk-stratify patients with presumed hyponatremia
- 4. Improve clinical outcomes in my patients
- 5. I do not anticipate a change in my practice