
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Disclosure
- Dr. Gettig has no conflicts of interest to
disclose.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Learning Objectives

- At the end of this session, the learner will be
able to:
- Define and interpret the following: nominal data,
ordinal data, continuous data, Type I error, Type II
error, alpha, beta, power, p-values and confidence
intervals.
- Describe the factors that affect statistical power.
- Compare, contrast and calculate absolute risk,
absolute risk reduction/increase, relative risk, relative
risk reduction/increase, odds ratio and number
needed to treat/harm
\qquad
\qquad
\qquad ordinal data, continuous data, Type I error, Type II error, alpha, beta, power, p-values and confidence rals. \qquad
- Describe the factors that affect statistical power.

Compare, contrast and calculate absolute risk, absolute risk reduction/increase, relative risk, relative risk reduction/increase, odds ratio and number needed to treat/harm

Learning Objectives (cont.)

Train

- At the end of this session, the learner will be able to:
- Select the appropriate parametric or nonparametric statistical test given a set of variables and a hypothesis
- Explain how statistical results in clinical studies can be used to make clinical decisions.
How confident are you with regard
to your ability to interpret statistics?
A. Very confident
B. Moderately confident
C. Somewhat confident
D. Not at all confident
E. This session is about statistics? Where's
the door?!
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Basic Terms/Concepts	
Types of data - Nominal - Ordinal - Continuous • Interval • ratio	significance terms
	- Alpha
	- Beta
	- Type I II
	- Power
	- P-value
	- Confidence interval

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

General Rule about Types of Data
- Higher level data can be transformed into
lower level data, but not the converse.
- Example:
- 4 patients
- SBPs: $119 \mathrm{mmHg}, 127 \mathrm{mmHg}, 117 \mathrm{mmHg}, 136 \mathrm{mmHg}$
• Assume $\leq 120 \mathrm{mmHg}$ is "at goal"
• How many patients are at goal?
• If we started with how many patients were at goal,
would you be able to determine their individual
SBPs?

\qquad
\qquad lower level data, but not the converse.

- Example:
- SBPs: $119 \mathrm{mmHg}, 127 \mathrm{mmHg}, 117 \mathrm{mmHg}, 136 \mathrm{mmHg}$ \qquad
- How many patients are at goal? \qquad
med with how many patients were at would you be able to determine their individual SBPs?

Table 1. Baseline Characteristics of the Participants		
Characteristic	Sustained-Release Bupropion $(\mathrm{n}=300)$	Placebo ($\mathrm{n}=300$)
Age, mean (SD). y	44.0 (10.9)	44.4 (11.3)
Women, No. (\%)	212 (70.7)	208 (69.3)
Married or living with a partner, No. (\%)	117 (39.0)	113 (37.7)
Monthly family income <\$1800, No. (\%)	158 (52.6)	164 (54.6)
SHigh school graduate, No. (\%)	151 (50.3)	149 (49.7)
No. of cigarettes smoked per day, mean (SD)	16.1 (7.5)	17.1 (8.5)
Smoke mentholated cigarettes, No. (\%)	235 (78.3)	236 (78.7)
Fagerström score, mean (SD)*	4.6 (2.1)	4.7 (1.9)
No. of previous serious attempts to quit, mean (SD)	2.1 (4.7)	2.2 (4.2)
Salivary cotinine, mean (SD), ng/mL	287.2 (138.8)	296.5 (147.0)
Exhaled carbon monoxide, mean (SD), ppm	22.1 (13.2)	23.3 (15.2)
$\frac{\text { Previous use of sus }}{\text { Other smokers in th }} \mathbf{A}=$ Nominal		24 (8.0)
		96 (32.0)
Weight, mean (SD).		81.6 (20.1)
Body mass index, n B = Ordinal		28.7 (6.3)
CES-D, mean (SD) +		11.9 (8.7)
$\frac{\text { Possible clinical deg }}{\text { The Fagestrom lest }}$ C= Continuous		84 (28.0)
		te greater levels
of nicotine dependence. \dagger Center for Epidemiologic Studies Depression Scale (CES-D) scores can range from 0 to 60 . Scores of 16 or higher indicate the likelihood of dinical depression because it represented the 80th percentile in a representative population. ${ }^{18}$		
Adapted from Ahluwalia JS, Harris KJ, Catley D, Okuyemi K, Mayo M. Sustained-ReleaseBupropion for Smoking Cessation in African Americans. JAMA 2002 Jul; 288(4):468-474.		

Hypotheses

- Null hypothesis $\left(\mathrm{H}_{0}\right)$
- Assumes no difference between therapies
\qquad
- Goal of studies is usually to reject $\mathrm{H}_{\text {o }}$
- Research/alternate hypothesis $\left(\mathrm{H}_{\mathrm{A}}\right)$
- Assumes a difference between therapies
- Goal of studies is usually to accept H_{A}
Type I Error
- Also called "alpha" error
- Null hypothesis is incorrectly rejected
- A difference is inferred; however, there is no true
difference \rightarrow false positive
- alpha ≤ 0.05 is generally accepted
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What does the ' p ' value mean?
- Every inferential statistical test has a 'test
statistic' (t, F, χ^{2}) and a probability of that result
(p)
- ' p ' is the probability that there is no difference,
$\frac{\text { no effect, or no relationship between the }}{\text { groups in the entire population of interest }}$
- Probability that the null hypothesis is true
- How likely is the observed difference, effect, or
relationship due to random chance?
\qquad
\qquad Every inferential statistical test has a 'test statistic' ($\mathrm{t}, \mathrm{F}, \chi^{2}$) and a probability of that result
' p ' is the probability that there is no difference,
\qquad no effect, or no relationship between the
\qquad groups in the entire population of interes
- Probability that the null hypothesis is true \qquad
How likely is the observed difference, effect, or relationship due to random chance? \qquad
\qquad

What does the ' p ' value mean?
\qquad

- The p value is used in determining whether or not the null hypothesis should be accepted or rejected \qquad
- If ' p ' is less than or equal to alpha, the null \qquad hypothesis must be rejected
- What about the research hypothesis?
- If ' p ' is greater than alpha, the null hypothesis must be accepted (or not rejected)
- What about the research hypothesis?

Please complete question
$\# 1$ on worksheet.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Confidence Intervals

- Estimates the range of values likely to contain the true value for a population
- Most population values (mean, \%) are practically impossible to obtain
- The width of a confidence interval depends on \qquad
- The amount of variability in the sample data
- The degree of confidence the researchers wish to have that their interval contains the true value

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Type II Error
- Also called "beta" error
- Null hypothesis is incorrectly accepted
(or not rejected)
- No difference is detected; however, there is a true
difference \rightarrow false negative
- beta ≤ 0.20 is generally accepted
- Chance for Type II error generally decreases as sample
size increases

Can Type I and Type II error occur simultaneously for the same endpoint in a study? \qquad
A. Yes
B. No

\qquad

-Sample size and power are directly related.
-Effect size and power are directly related. \qquad
-Alpha and power are directly related.
-Standard deviation and power are inversely related.

A researcher seeks to determine whether there is a significant difference in weight loss \qquad between patients who take Drug A and patients who take Drug B \qquad

- Null hypothesis: There is no difference in weight loss between groups.
- The researcher wants to detect a difference of 10% weight loss in the 2 groups.
- Upon review of previous literature, the researcher estimates the standard deviation at 8 pounds.
- Alpha is set at 0.05
- Sample size to achieve 80% power is 250 patients per group.
\qquad
\qquad
\qquad
\qquad
\qquad

A = power increases, $B=$ power decreases,

$$
C=\text { no effect on power }
$$

- What if...
- The researcher changed his mind and wanted to wants to detect a difference of 3% weight loss between groups?
- The researcher underestimated the std. dev? It is actually 15 lbs .
- The researcher wants to set a more conservative alpha at 0.01 ?
- The researcher could only recruit 100 patients per group?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

Caveats to Measures of Risk

valip

Always keep results in perspective

- Are you referring to patients who received a medication or did not receive a medication?
- Are you referring to a positive (desired) outcome or a negative (adverse) outcome?
- In the case of head-to-head (comparative trials), which medication is the comparator and which is the intervention?
- By appropriately orienting yourself to the results, you will avoid misinterpretation of them.

\qquad
\qquad
\qquad
\qquad
\qquad

Representing Risk				
		Outcome		
		Y	N	
Exposure	Y	A	B	M1
		C	D	M2
	N			
		N1	N2	N
$A=$ \# of exposed persons with outcome $B=$ \# of exposed persons without outcome $C=$ \# of non-exposed persons with outcome $D=$ \# of non-exposed persons without outcome				
M1 $=$ total study sample exposed M2 = total study sample not exposed N1 = total study sample with outcome N2 = total study sample without outcome $\mathrm{N}=$ total study sample				

What is Absolute Risk?

- Absolute risk is the risk or rate of an event in a defined period of time.
- Sometimes called incidence or incidence rate
- Helps readers make sense of the true risks and benefits of treatment
- Relative risk \& odds ratio do not help the reader consider how common an outcome is to start with.
- Using the previous 2 slides as examples: \qquad
- The AR for the outcome would be A / M_{1} for those exposed (intervention group)
- The AR for stroke in the aspirin group would be $221 / 19,934=0.011=1.1 \%$

What is ARI?

- Absolute Risk Increase (ARI)
- Difference in absolute risks of an outcome
\qquad likely to result in harm to a patient
- Related to Number Needed to Harm (NNH)
- Calculated the same way as ARR
- Keep ARs in perspective to determine whether result is an ARR or ARI

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
What is NNT?
- For the previous example:
$-1 /$ ARR $=1 / 0.002=500$
- If you do not want to go back and forth between
decimal and percent, you can divide 100 by ARR
in its percent form (i.e., NNT $=10000.2=500)$ - Therefore, for every 500 patients that \quad receive ASA instead of placebo (i.e., no

What is NNT/NNH?

- In clinical practice, NNTs and NNHs can be compared to weigh risks versus benefits.
- Should take into account how severe the outcomes are in question. \qquad
- What's a more clinically important beneficial outcome?
- Getting to goal BP or preventing stroke?
- What's a more clinically important adverse outcome?
- Experiencing a headache or an embolism?
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Odds ratios VS. Relative RiSkS
- 4 marbles: 1 is red; 3 are blue
odds of choosing a red marble are 3 to 1 against choosing
a red marble $=0.33=1 / 3$
probability of choosing a red marble is 0.25 or

1 in 4 \quad\begin{tabular}{l}
Odds ratios (ORs) are often used in case-control

studies and in regression models.

- \quad| Relative risks (RRs) are calculated in other study |
| :--- |
| designs. |

- Hazard ratios (HRs) can be interpreted similar to

RRs.
\end{tabular}

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad Hazard ratios (HRs) can be interpreted similar to
RRs.
\qquad

\qquad
\qquad

Types of Effects

- By convention, assuming the intervention is the \qquad numerator and the comparator (which is often placebo) is the denominator: \qquad
- ORs/RRs/HRs $<1 \rightarrow$ protective/beneficial effect
- OR(stroke $)_{\text {ASA }}=(221 / 19713) /(266 / 19676)=0.829$ \qquad
- RR (stroke) $)_{\text {ASA }}=(221 / 19934) /(266 / 19942)=0.831$
- ORs/RRs/HRs $=1 \rightarrow$ NO effect
- Ors/RRs/HRs > $1 \rightarrow$ harmful/adverse effect
\qquad
\qquad
\qquad

Ors/RRs/HRs and Cls

Use of confidence intervals

- Researchers often report a confidence interval around the relative risk rather than a p value.
- Finding is considered statistically significant based on whether or not the Cl contains 1.
- RR(CVevent) ASA $=0.91,95 \% \mathrm{CI}=0.80$ to 1.03
- $\operatorname{RR}(\text { stroke })_{\mathrm{ASA}}=0.83,95 \% \mathrm{Cl}=0.69$ to 0.99
- $\operatorname{RR}(\text { hemstroke })_{\text {ASA }}=1.24,95 \% \mathrm{CI}=0.82$ to 1.87
- If the Cl contains 1 , the relative risk is not statistically significant!
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What is RRR?
- Relative risk reduction (RRR)
$-\quad 1-\mathrm{RR}$
- RRR (stroke $)_{\text {ASA }}$
$-\quad 1-R R=1-0.83=0.17$ or 17%

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
What is RRI?

- Relative risk increase (RRI)
$-|(1-R R)|$
- calculated similarly to RRR
- Again, perspective is important
- Is the event beneficial or harmful?
- Which is the intervention? Which is the
comparator?
\qquad
\qquad
\qquad
\qquad
\qquad
Is the event beneficial or harmful?
Which is the intervention? Which is the

Relative vs. Absolute Risk Reduction/Increase

- RRRs and RRIs will almost always be larger than their corresponding ARRs and ARIs.
- Watch for these in drug ads!
- RRRs may be used for efficacy outcomes
- ARIs may be used for safety outcomes
- Why is this?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Promotional Material: Risk

\qquad

- Relative risk (RR) vs. absolute risk (AR) \qquad vs. number needed to treat (NNT)
- RR will always be higher than AR
- CURE study example
- 20\% RRR CV events (2.1\% ARR)
-1% ARI in serious bleeds (38\% RRI)
The CURE Trial Investigators. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N Engl J Med 2001; 345:494-502.

Important Point

- RRs do not tell you anything about the overall incidence of the disease/outcome.
- For example:
- Treatment X reduced mortality from 40% (with placebo) to 20% (with tx)
- Treatment Y reduced mortality from 4% (with placebo) to 2% (with tx)
- Relative risk of death with tx is $\underline{0.5}$ for both treatments.
- Treatment X's NNT is $1 /$ ARR $=1 / 0.20=\underline{\mathbf{5}}$
- Treatment Y's NNT is $1 /$ ARR $=1 / 0.02=\underline{\mathbf{5 0}}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Statistical Analysis

- Statistical tests to be performed should always be determined before (a priori) the study takes place and should be described in the Methods section
- Your job
- If reading a trial: Determine if the proper tests were performed. Interpret and evaluate the results.
- If performing a study: Select and perform the appropriate test. Interpret and evaluate the results.
\qquad

One-tailed vs. Two-tailed Tests

One-tailed Test

- Research hypothesis states that one group will be higher/lower than another (directional)

Two-tailed Test

- Research hypothesis states that one group will be different than another (non-directional)
- Two-tailed tests are more common
- Easier to reject null hypothesis

Two-tailed Tests

- Researchers often "cheat" when interpreting two-tailed tests
- Assign a direction to the difference in the population based on the direction of the difference in the sample.
- This can result in "Type III" error
- There is a statistically significant difference, but the direction of the difference stated by the researchers based on their sample data is incorrect.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Types of Groups

Independent Groups

- The subjects being compared in each group are different - mutually exclusive
- Also known as between-group comparisons
- Examples
- RCT (parallel designs) - Drug A vs. Drug B, Drug vs. Placebo
- Males vs. Females
- P-1 vs. P-2 vs. P-3 vs. P-4
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Types of Groups

\qquad

Dependent Groups

\qquad

- The subjects being compared in each group are the same
- Also known as within-group comparisons
- Examples
- Pretest - Posttest
- Before - After
- Crossover designs

A researcher designs a study in which 3 HMGCoA
Reductase Inhibitors are compared in 3 separate groups of
100 subjects (total 300). The primary outcome measure is
LDL at 8 weeks, and the null hypothesis is that there is no
difference in the treatments with respect to LDL.
Which statistical test should be used to analyze the data?
A - t-test
B - paired t-test
C - ANOVA
D - Mann Whitney U
E - Chi-square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Putting It All Together

- How can all this information used?
- Better conceptualize risk and benefit in clinical trials and pharmaceutical advertisements
- Better apply the results of studies to patient care
- Considering the worksheet:
- What if your patient was at very high risk for stroke or MI?
- What if your patient was at very high risk for bleeding?
- How would this affect your choice whether clopidogrel should be added to ASA?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad sould e added \qquad

Guide to Inferential Statistical Tests of Difference

David P. Zgarrick, Ph.D.

Important

Independent Groups - Different subjects in each group (mutually exclusive)
Dependent Groups - Same subjects in each group (paired/matched/repeated measures)

Statistics in Clinical Practice
 ICHP Annual Meeting 2009 Jacob Gettig, PharmD, MPH, BCPS

In groups of 2 to 4 , please answer the following questions.

End Point	Clopidogrel plus Aspirin $(\mathrm{N}=7802)$	Placebo plus Aspirin ($\mathrm{N}=7801$)	Relative Risk (95\% CI)*	P Value
	no. (\%)			
Efficacy end points				
Primary efficacy end point	534 (6.8)	573 (7.3)	0.93 (0.83-1.05)	0.22
Death from any cause	371 (4.8)	374 (4.8)	0.99 (0.86-1.14)	0.90
Death from cardiovascular causes	238 (3.1)	229 (2.9)	1.04 (0.87-1.25)	0.68
Myocardial infarction (nonfatal)	146 (1.9)	155 (2.0)	0.94 (0.75-1.18)	0.59
Ischemic stroke (nonfatal)	132 (1.7)	163 (2.1)	0.81 (0.64-1.02)	0.07
Stroke (nonfatal)	150 (1.9)	189 (2.4)	0.79 (0.64-0.98)	0.03
Secondary efficacy end point \dagger	1301 (16.7)	1395 (17.9)	0.92 (0.86-0.995)	0.04
Hospitalization for unstable angina, transient ischemic attack, or revascularization	866 (11.1)	957 (12.3)	0.90 (0.82-0.98)	0.02
Safety end points				
Severe bleeding	130 (1.7)	104 (1.3)	1.25 (0.97-1.61)	0.09
Fatal bleeding	26 (0.3)	17 (0.2)	1.53 (0.83-2.82)	0.17
Primary intracranial hemorrhage	26 (0.3)	27 (0.3)	0.96 (0.56-1.65)	0.89
Moderate bleeding	164 (2.1)	101 (1.3)	1.62 (1.27-2.08)	<0.001

* Cl denotes confidence interval.
\dagger The secondary efficacy end point was the first occurrence of myocardial infarction, stroke, death from cardiovascular causes, or hospitalization for unstable angina, a transient ischemic attack, or a revascularization procedure (coronary, cerebral, or peripheral).

Adapted from: Bhatt DL et al. N Engl J Med. 2006; 354(16): 1706-17.

1. Assuming alpha was set at 0.05 , which efficacy and safety end points were statistically significant? How do you know?
2. For the secondary efficacy endpoint, identify/calculate the following:
a. $\mathrm{AR}_{\text {clopidogrel }+\mathrm{ASA}}$
b. $\mathrm{AR}_{\text {placebo }+ \text { ASA }}$
c. ARR
d. NNT
e. RRR
f. 95\% CI for the RRR
3. For the safety endpoint of moderate bleeding, identify/calculate the following:
a. $\mathrm{AR}_{\text {clopidogrel }+\mathrm{ASA}}$
b. $\mathrm{AR}_{\text {placebo } 0 \text { +ASA }}$
c. ARI
d. NNH
e. RRI
f. 95% CI for the RRI
4. Make a statement regarding the risk/benefit trade-off using the NNT and NNH for the above efficacy and safety endpoints.
