

Faculty

Susan Cornell, PharmD, CDE, FAPhA, FAADE Associate Professor of Pharmacy Practice Associate Director of Experiential Education Midwestern University Chicago College of Pharmacy Medication Therapy Management/Diabetes Care Provider Bolingbrook Christian Health Clinic & Assess Community Health Clinic Downers Grove, Illinois

Disclosures

• Susan Cornell, PharmD, CDE, FAPha, FAADE: Speakers' Bureau—Sanofi

Learning Objectives

- Describe the reasons for use of concentrated insulin formulations in the treatment of diabetes
- Discuss the clinical, pharmacokinetic, and pharmacodynamic profiles for current and emerging basal insulins
- Describe the pharmacist's role in counseling patients from inpatient to outpatient settings to minimize the risk of insulin administration errors and hospital readmissions

Technician Learning Objectives

- Describe the reasons for use of concentrated insulin formulations in the treatment of diabetes
- List the available formulations of newer insulins
- Explain how to use an insulin pen

Concentrated Insulin: The Diabesity Epidemic

Insulin Resistance

- · Major defect in individuals with type 2 diabetes
- Reduced biological response to insulin
- Closely associated with obesity
- Associated with cardiovascular risk
- Type 1 diabetes patients can be insulin resistant as well

American Diabetes Association. *Diabetes Care*. 1998;21(2):310-314. Beck-Nielsen H, et al. *J Clin* Invest. 1994;94(5):1714-1721. Bloomgarden ZT. *Clin Ther*. 1998;20(2):216-231. Boden G. *Diabetes*. 1997;46(1):3-1

Glucose-Lowering Comparison

Monotherapy	Route of Administration	Targets Insulin Resistance	Target Glucose: FPG or PPG	A1C Reduction (%)
Sulfonylurea	Oral	No	Both	1.5-2.0
Metformin	Oral	Yes	FPG	1.5
Glitazones	Oral	Yes	Both	1.0-1.5
Meglitinides	Oral	No	PPG	0.5-2.0
AGIs	Oral	No	PPG	0.5-1.0
DPP-4 inhibitors	Oral	No	PPG	0.5-0.7
Bile acid sequestrant	Oral	No	PPG	0.4
Dopamine agonists	Oral	No	PPG	0.4
SGLT-2 inhibitors	Oral	Maybe	FPG	0.7 – 1.1
GLP-1 agonists	Injectable	No	Short-acting – PPG Long-acting – Both	0.8-1.5
Amylin analogs	Injectable	No	PPG	0.6
Insulin	Injectable	Yes (to a degree)	Basal – FPG Bolus – PPG	↓ as much as neede

plasma glucose; PPG = postprandial glucose; SGLT-2 = sodium-glucose cotransporter 2. Unger J, et al. Postgrad Med. 2010;122(3):145-157. Cornell S, et al. Postgrad Med. 2012;124(4):84-94.

Insulin Therapy for Insulin Resistance

- · Insulin, insulin, and yet more insulin!
 - Causes weight gain and fluid retention
 - Increased risk of hypoglycemia
 - Expensive at high volumes (especially the pens)
 - Multiple injections per day often needed
- · Pumps not practical with high-volume insulin usage

American Diabetes Association. Diabetes Care. 2016;39(Suppl 1):S6-S12.

Pharmacokinetic Profile of Currently Available Insulins

The Basal-Bolus Concept

- Basal insulin: 50% of daily needs
 - Controls nighttime and between-meal glucose at a nearly constant level
- · Bolus insulin: 50% of daily needs
 - Controls mealtime glucose
 - 10% to 20% of total daily insulin requirement at each meal
- · Correction dose (sensitivity factor)
 - Correct hyperglycemia reactively

Concentrated Insulin:

The Pharmacokinetic, Pharmacodynamic, and Clinical Properties of Concentrated Insulin Products

U-100 Insulin vs U-500 Insulin

- Human Regular U-500 is highly concentrated and contains 5 × as much insulin in 1 mL as standard U-100 insulin
 - Truly used for patients on high doses of insulin (usually >200 units daily)
- Both have onset of action at 30 minutes
 - U-500 insulin exhibits a delayed and lower peak effect relative to U-100
 - U-500 insulin typically has a longer duration of action compared with U-100 (up to 24 hours following a single dose)
- Clinical experience has shown that U-500 insulin frequently has time-action characteristics reflecting both prandial and basal activity

de la Peña A, et al. Diabetes Care. 2011;34(12):2496-2501.

Human Regular U-500 Pen Can deliver up to 300 units in a single injection No dose conversion for pen Vials/syringes will need dose conversion Dials in 5-unit increments Holds 1500 units of insulin in every pen For severely insulin-resistant patients When daily insulin requirements are in excess of 200 units/dag

High-Concentration Glargine (U-300)

· Available only in a pen

- U-300: 450 units/pen, max 80 units/injection
- Can be used for patients on small and large volumes of insulin
- Offers a smaller depot surface area, leading to a reduced rate of absorption
- Provides flatter and prolonged PK and PD profiles and more consistency
 - Half-life is ~23 hours
 - Steady state in 4 days
 - Duration of action ≤36 hours

Garber AJ. Diabetes Obes Metab. 2014;16(6):483-491. Owens DR, et al. Diabetes Metab Res Rev. 2014;30(2):104-119. Steinstraesser A, et al. Diabetes Obes Metab. 2014;16(9):873-876. US Food and Drug Administration. www.accessdata.ida.gov/scripts/cde/drugsattda.

PK and PD of U-300 Insulin Glargine vs U-100 Insulin Glargine

Basal Insulin Degludec

Overcoming Barriers to Insulin Therapy

- Avoid using insulin as a "threat," but as a solution; discuss it as an option early
- Use insulin pens and regimens that offer maximum flexibility
- · Give a "limited" trial of insulin
- Tell patient that injection is less painful than a finger stick; give an injection in the office/hospital/pharmacy
- Teach patient to recognize and treat hypoglycemia
 - Use basal analog insulin to minimize hypoglycemia

Kruger DF, et al. Diabetes Educ. 2010;36 Suppl 3:44S-72S. Funnell MM. Clinical Diabetes. 2007;25(1): 36-38. Derr RL, et al. Diabetes Spectrum. 2007;20(3):177-185.

Patient Education: From Inpatient to Outpatient Setting

- Equipment and supplies needed to effectively manage insulin therapy at home
 - Insulin
 - · Compare at home vs hospital (formulary) insulin
 - Syringes or pen needles
 - Blood glucose meter and strips
 - Lancets and lancing device
 - Glucagon emergency kit
 - Contact information of diabetes care provider(s)

What Patients Need to Know about Insulin AND Delivery Devices

- Storage and expiration
 - When it should be refrigerated
 - When it can be at room temperature
 - Time medication expires after first use
- How to prepare product for first use
- · How to properly use the device
- · How to dispose of the device

Product	Exp	iration
---------	-----	---------

Products/Device	Refrigerated	Unrefrigerated	Once used (opened)
Vials Insulin lispro U-100 Insulin aspart Insulin glulisine Insulin glargine	Expiration Date	28 days	28 days
Vials Insulin human N Insulin human R	Expiration Date	31 days	31 days
Pens Insulin lispro U-100, U-200 Insulin aspart	Expiration Date	28 days	Do not refrigerate Lispro, glargine, glulisine: 28 days
Insulin glulisine Insulin glargine U-100 Insulin glargine U-300		Glargine U-300: 42 days	Aspart: 14 days
Vials & pens: Insulin detemir	Expiration Date	42 days	42 days (pens should not be refrigerated)
Pens: Insulin degludec U-100, U-200	Expiration Date	56 days	56 days (pens should not be refrigerated)
Inhaled: Insulin human	_	Expiration Date	15 days for device

Basal Insulin Delivery Options

Insulin	Concentration	Vial	Pen
NPH	U-100	х	х
Glargine	U-100	х	х
Glargine	U-300		х
Detemir	U-100	х	х
Degludec	U-100 U-200		х
Regular Human	U-500	х	х

First-Time Preparation

Check the pen

- Make sure liquid is clear, colorless, and particle-free (N insulin and mixed insulin will be cloudy)
 Wipe the rubber stopper with alcohol
- Attach the needle
- Prime the needle

Dial 2 to 3 units; hold up, depress the button

Repeat process until a drop of insulin appears at tip of

Inject straight into the skin

Depress button to release insulin into subcutaneous tissue

Hold for 5 to 10 seconds before removing needle from skin

Remove needle and dispose into sharps container

Concentrated Basal Insulin Dosing Conversion Comparison

Glargine U-300 True basal insulin		Degludec U-200 True basal insulin		Human R U-500 Pseudo-basal insulin	
2 daily injections	80% of total daily basal dose	2 daily injections	80% of total daily basal dose		
Maximum single-dose injection	80 units	Maximum single-dose injection	160 units	Maximum single-dose injection	300 units
Dialed in 1-ur	nit increments	Dialed in 2-ur	nit increments	Dialed in 5-ur	nit increments
450 units of in	nsulin per pen	600 units of ir	nsulin per pen	1500 units of i	nsulin per pen
Expect higher Glargine maintain gly	r daily dose of U-300 to cemic control			Monitor for h	ypoglycemia

Clinical Pearls

- · Watch for over basalization
 - High basal dose with no or little bolus insulin
- Continually increasing insulin doses does not reduce insulin resistance
- Humulin R U-500 is useful for patients on very high total daily insulin doses (eg, >200 TDD/day)
- Ultra long-acting basal insulins (Glargine U-300 and Degludec U-200) provide longer duration of action for better basal coverage with low noctunal hypoglycemia

Take Aways

- Insulin resistance is a MAJOR problem
 - Some concentrated insulin may help people on large doses of insulin
 - However, need to use combination drug therapy to improve insulin sensitivity
- Novel, long-acting basal insulin analogs in development may provide benefit compared with current agents
 - Flatter time-action profiles with less variability
 - Less hypoglycemia, particularly nocturnal hypoglycemia
 - Patients need to know how to properly use insulin devices - Hospital pharmacists should review technique at discharge
 - Rospital prantacists should review technique at discharge
 Community pharmacists should review technique at initial fill and periodically thereafter

